
LHMM: A Learning Enhanced HMM Model for
Cellular Trajectory Map Matching

Weijie Shi1, Jiajie Xu∗ 1, Junhua Fang1, Pingfu Chao1, An Liu1, and Xiaofang Zhou2

1School of Computer Science and Technology, Soochow University, Suzhou, China
2The Hong Kong University of Science and Technology, Hong Kong, China

1shiweijie0311@foxmail.com, 1{xujj, jhfang, pfchao, anliu}@suda.edu.cn, 2zxf@cse.ust.hk

Abstract—Map matching is a problem to align recorded
location data to a digital map. It has been well studied to
map GPS data collected from vehicles to paths in a road
network. The problem of Cellular Trajectory Map-Matching
(CTMM) is a new problem that deals with trajectories of cellular-
based positioning data. It has a wide range of applications, for
example, for telecommunication companies to understand and
predict traffic information based on telecom tokens obtained
from vehicles. CTMM is a significantly more challenging task
that faces much lower data precision and higher positioning
errors. While Hidden Markov Model (HMM) based methods
can achieve satisfactory results for GPS-based map matching, we
show that they cannot be directly applied to the CTMM problem.
In this paper, we aim at reducing the impact of positioning errors
by incorporating knowledge obtained by neural networks into
learned probabilities. A multi-relational graph learning method
is developed to generate meaningful embedding, with multi-
relational useful information fully preserved in a shared space.
An attentive neural network is then designed as the learner
for observation probability, incorporating the knowledge of the
dynamic correlation between roads and cell towers under varying
trajectory contexts. A transition probability learner is used to
capture implicit deep features for enhanced transition proba-
bility modeling. Finally, the learned observation and transition
probabilities are seamlessly integrated into HMM to guide more
accurate path-finding. Extensive experiments on two large-scale
cellular datasets reveal that our approach achieves high accuracy
and robustness on CTMM.

Index Terms—Map-matching, Cellular Trajectory Data, Tra-
jectory Data Pre-processing

I. INTRODUCTION

The widespread use of mobile phones has generated large-
scale cellular trajectory data, where each trajectory is a se-
quence of time-stamped (cell tower) locations sampled via mo-
bile positioning. Cellular trajectories record people’s moving
history, and have been widely used in various applications,
including security tracking [1], traffic management [2], [3],
user behavior analysis [4]–[6] and COVID-19 control [7]. To
exploit the value behind these data, an essential preprocessing
task is Cellular Trajectory Map-Matching (CTMM), which
aims to return the traveled path by aligning cellular trajectories
onto the road network.

However, existing map-matching methods are mainly de-
signed for GPS trajectories and are unsuitable for the CTMM
task. The mainstream map-matching algorithms [8]–[10] adopt

*Corresponding author

the Hidden Markov Model, which treats each road segment as
a hidden state, and recovers the path as a road sequence based
on the observed trajectory points. Specifically, they rely on
an observation probability to locate potential road segments
of each point, and a transition probability to evaluate the
likelihood of the object moving from one road to another.
Particularly, in existing methods [8], [11], [12], these two
probabilities are guided by explicit features (e.g. spatial dis-
tance) that can well reflect the point-road correlation, and
achieve satisfactory results in GPS trajectory map-matching.
Unfortunately, it does not hold for CTMM, since a cellular
trajectory depicts the position by the physical location of the
interacted cell tower, which usually deviates from the user’s
actual location by 0.1-3 kilometers [13], [14], and is much
higher than the 1-50 meter difference in GPS trajectories. As
a result, traditional HMM-based methods would fail due to
the absence of robust observation and transition probabilities
under high positioning errors.

Recently, deep learning techniques are applied to improve
the matching performance for CTMM via capturing useful
implicit features. In this line, the state-of-the-art method DMM
[15] treats CTMM as a seq2seq problem, and transforms the
cell tower sequence to road sequence via RNN inference.
However, the seq2seq model faces error propagation [16],
exposure bias [17] and hallucination problems [18]. Specif-
ically, utilizing knowledge from previously matched roads
for subsequent matching sometimes leads to severe error
propagation. The exposure bias and hallucination issues also
make the seq2seq model difficult to train and converge. Over-
all, seq2seq is typically used for sequence generation tasks
with monotonous sequential transfer patterns or low accuracy
requirements (e.g. QA and machine translation), which are
in contrast to CTMM that calls for accurate path generation
subject to the road network, physical constraints, and varying
mobility patterns.

Example 1. An illustrative example is shown in Figure
1, which includes map-matching results of the HMM-based
method (green color) and learning-based method (red line)
of the same cellular trajectory. The ground-truth path is the
blue line. We can easily observe that the HMM confronts an
error on noisy point x1, which yet can be avoided by the
seq2seq-based model since it can locate x1 to more relevant
but farther roads by the learned knowledge. However, for the

cellular trajectory point traveled path

1 KM

HMM-based model
 matching result HMM's candidate road

segments for a point
Seq2seq-based model

 matching result traveled road segment

Fig. 1. Illustrative example of cellular trajectory map-matching.

point x2 with extremely high positioning error, both methods
fail to match it to the correct path. The seq2seq-based model
suffers from severe error propagation, such that the error of
x2 leads to subsequent matching error. In contrast, the HMM
can avoid error propagation and correct mismatches in time.
Therefore, the HMM shows strong robustness in ensuring the
path roughly follows the cellular trajectory by physical con-
straints, while learning-based methods are superior in dealing
with noisy points.

Therefore, a more practical solution is to integrate the
learning capabilities into the HMM framework. We thus adopt
the HMM framework as the backbone, which enables us
to easily control the map-matching with intuitive physical
constraints, and inherit the stability of the HMM in coarse
resolution. In addition, deep learning components can be added
to the HMM to explore and utilize useful knowledge for
more accurate path-finding, particularly for the trajectory with
high positioning errors. However, designing such a learning-
enhanced model faces several challenges.

First, it requires to model multi-relational information and
useful implicit knowledge. Accurate CTMM processing relies
on multi-relational information implied in the dataset. For ex-
ample, to better locate a trajectory point with high positioning
error, it is essential to capture the co-occurrence relationship
between the cell towers and the roads that are frequently in-
teracted with. Spatial proximity should be preserved to reflect
not only the topological structure of the road network, but
also the sequentiality of cell towers in trajectories, providing
both spatial and moving pattern information. These relations
need to be effectively captured and embedded into a shared
space, in a balanced and informative manner. Furthermore,
based on this, it is important to explore useful knowledge that
can boost CTMM processing, such as the implicit and dynamic
correlation between the road segment and the cell tower under
varying trajectory contexts.

Second, the learned knowledge must be rationally fused
into the HMM algorithm by extending the observation and
transition probabilities. To accurately locate the road of each
point, an effective learned observation probability is required

that not only captures the implicit context-aware knowledge
for better positioning denoising, but also limits the candidate
search space by the explicit features. Besides, the transition
probability for path evaluation should be able to decide a better
path by not only explicit features (e.g. less distance and turns)
but also its hidden relevance to the trajectory, which means a
learning-based transition probability is necessary.

Besides, the Viterbi algorithm cannot completely handle the
path-finding process for the CTMM task. For efficiency con-
cerns, the HMM-based methods utilize the Viterbi algorithm
to choose a globally optimal path, where each point is mapped
to some road candidates selected by observation probability.
Unfortunately, if all road candidates of a point (e.g. x2 in
Figure 1) do not belong to the ground-truth path, a mismatch
will inevitably occur. This phenomenon frequently happens in
cellular trajectories due to their high positioning errors. The
path-finding process is thus essential to be improved, so as to
provide chances to skip such noisy points.

To this end, this paper proposes a learning-enhanced HMM
model for CTMM, named LHMM. It incorporates data knowl-
edge of the deep neural network into the HMM framework to
guide the evaluation of roads and paths. In the embedding
layer, we construct a multi-relational graph and utilize a
heterogeneous graph neural network to extract the implicit
high-order relations, so that the multi-relational information
can be fully considered. To accurately locate the potential
position, an attention network is applied to precisely model
the dynamic correlation between roads and points for learned
observation probability. And the learned transition probability
model the hidden relevance between moving paths and trajec-
tories. Furthermore, we integrate these learned probabilities
into the HMM path-finding process. To combat noisy points,
we design a series of shortcuts into the candidate graph,
providing chances to skip such noisy points. The primary
contributions are summarized as follows:

• We propose a neuralized HMM algorithm to support
accurate CTMM under high positioning errors. To the
best of our knowledge, this is the first learning-enhanced
HMM map-matching method, which inherits the robust-
ness of the HMM and fuses deep semantic features.

• We propose a multi-relational graph-based representation
learning to embed cell towers and road segments with
synergistic embeddings, with useful relations and knowl-
edge to be fully captured for the CTMM task.

• We design a learned observation probability with implicit
context-aware correlation between roads and points, and
a learned transition probability with hidden relevance
between moving paths and trajectories. These two learned
probabilities then guide the path-finding on an improved
candidate graph.

• Extensive experiments are conducted on two large real
cellular datasets. The results show that our model
achieves state-of-the-art performances.

II. RELATED WORK

GPS Trajectory Map-matching. With the development of
traffic sensors and GPS-enabled devices, the task of map-
matching has received much attention from the research com-
munity [19], [20], which aims to identify the traveled road
segment where the user (or vehicle) is/has been driving.

The majority of existing map-matching methods are de-
signed for GPS trajectories. In the literature, classical meth-
ods include geometric algorithms [21]–[24], topological algo-
rithms [25], [26], probabilistic algorithms [27], [28], Kalman
filter [29], fuzzy logic [30], [31], etc. More advanced methods
[8], [10], [11], [32]–[35] adopt HMM to take advantage of its
superb abilities in concurrently evaluating multiple hypotheses
of the actual mapping to find the eventual maximal likelihood
solution. Variants of HMM-based map-matching algorithms
are proposed and widely used due to their superior perfor-
mance. For example, IF-Matching [32] utilizes moving speed
to handle many ambiguous cases. RCIVMM [35] proposes a
weighted-matrix based interactive voting algorithm to select
the best results from a global perspective. MCM [34] models
common sub-sequence between the GPS trajectory and the
potential routes. Recently, some deep learning-based models
[36]–[39] exploit the knowledge (e.g., the mobility pattern) of
enormous trajectory big data, with implicit features to improve
the locating ability. However, these map-matching methods are
designed for GPS trajectories with accurate locations.

Cellular Trajectory Map-matching. Cellular trajectory
map-matching (CTMM) aims to transform a trajectory under
cellular-based positioning to a path on the road network.
Compared to GPS trajectories, cellular trajectories have high
positioning errors, making the above works impossible to
support CTMM.

In recent years, many efforts have been devoted to the
CTMM task. These methods can be generally classified into
two categories: (1) the HMM-based methods [12], [40]–
[42]. For example, SnapNet [12] applies a series of filters
to handle noisy locations and a number of heuristics (e.g.
moving direction, fewer turns) to reduce noise interference.
THMM [42] considers the geometric relationship between the
road segments to constrain the HMM path-finding process.
(2) the seq2seq-based method [15]. It adopts a recurrent
neural network (RNN) to identify the most-likely path given
a sequence of trajectory points. However, seq2seq models
are normally used in fields like QA and machine translation,
and are relatively weak in supporting sequence generation
tasks with the requirement of high accuracy. It always finds
low-quality paths very dissimilar from the ground-truth path.
In contrast, HMM shows much greater stability due to its
utilization of physical hypotheses. This ensures more likely
return paths roughly follow the trajectory points by adopting
HMM.

Despite the HMM can act as an effective backbone for
CTMM, it lacks the ability to consider high-order point-road
information to overcome high positioning errors, especially
in challenging situations. We thus aim to improve existing

methods by proposing neuralized HMM. Different from con-
ventional HMM-based map-matching methods, we leverage
the effectiveness of neural networks in learning implicit deep
features, and improve the observation and transition probabili-
ties by fusing learned knowledge for enhanced path evaluation.

III. PRELIMINARIES
In this section, we give some useful definitions and formal-

ize the problem of CTMM. Then, we present the basic concept
of map-matching with standard HMM.

A. Problem Definition

We first define some key concepts in map matching, and
then formalize the problem of this paper.

Definition 1 (Cell Tower). The cell tower has a fixed
spatial position, corresponding to a longitude and latitude
coordinate. As the mobile phone moves, it connects to cell
towers sequentially, forming cellular trajectory data.

Definition 2 (Cellular Trajectory). The cellular trajectory X
is a cell tower sampling sequence denoted as x1, x2, . . . , x|X|,
where xi = (posi, ti) is a trajectory point under cellular-based
positioning, which contains its position and timestamp. Note
that posi is the location of the interacted cell tower by the
smartphone, which has high positioning error relative to the
actual location.

Definition 3 (Road Network). Let G ⟨V,E⟩ denote a road
network, where V is a set of nodes representing intersections
or terminal points; E contains a set of directed road segments
ei connecting these nodes. A path P on road network G is
composed of a sequence of consecutive road segments, which
is expressed as e1 → e2 → · · · → e|P|.

Problem Formalization. Given a road network G and a
cellular trajectory X , the CTMM problem aims to map-match
a path P that is close to the ground-truth path Pg of X .

B. Map-matching with Standard HMM

Reviewing HMM Algorithm. In the literature, the HMM
algorithm is widely used in map-matching due to its good
robustness and accuracy. By applying HMM, each point xi is
projected onto a candidate road segment defined as:

Definition 4 (Candidate Road Segments). Candidate road
segments of a trajectory point are a set of roads, which are
potential locations of the point. For efficiency concerns, a
trajectory point is only map-matched to its candidate road
segments. We use cji ∈ Ci to denote the j-th candidate road
segment of xi, where Ci is xi’s candidate road set.

Following previous works [8], [12], [42], a matching path
can be transformed into a series of moving between candidate
road segments, i.e. P : ci1 → cj2 → · · · → ck|X|, where cji−1 →
cki is the shortest path from cji−1 to cki . Then this path is
evaluated by:

W (P) =
|X|∑
i=2

PT

(
cji−1 → cki

)
· PO

(
cki |xi

)
(1)

where PO(·) is the observation probability that denotes the
likelihood of placing the point on the candidate road segment;

PT (·) is the transition probability that denotes the likelihood
of moving from one candidate road to another via the shortest
path.

Setting probabilities PO(·) and PT (·). The key problem
of adopting HMM for map-matching is the setting of these
two probabilities, which determines the final performance. For
observation probability PO(·), the most popular measure is the
spatial distance between a point xi and its related candidate
road cki . Previous works [8], [12], [32], [42] assume that a
closer distance implies a higher matching probability:

PO

(
cki |xi

)
=

1√
2πσ1

e
−0.5

(
dist(cki ,xi)−µ1

σ1

)2

(2)

where dist(cki , xi) is a Euclidean distance function. µ1 and
σ1 respectively denote the mean and standard deviation of
Gaussian distribution. For transition probability PT (·), existing
methods assume the length of the moving path is similar to
the distance of the corresponding two trajectory points:

PT

(
cji−1 → cki

)
=

1

σ2
e
|dist(xi−1,xi)−dist(cji−1

,cki)|
σ2 (3)

where dist(cji−1, c
k
i) is the route length of shortest path. σ2 de-

notes the standard deviation. Moreover, many heuristics have
been adopted to set observation and transition probabilities,
including the velocity constraint [8], the moving speed [32],
moving direction [12], and moving reachability [34], [42].

Potential Issues. The core of HMM algorithm is to evaluate
roads and paths by the observation probability PO(·) and
transition probability PT (·) respectively. However, different
from GPS trajectory map-matching, the CTMM task is much
more challenging due to the high positioning error (normally
0.1-3 kilometers) of cell tower positioning, which brings huge
ambiguity and uncertainty for map-matching. In such cases,
a road closer to a trajectory point is not necessarily more
likely to be its actual location. Accordingly, the distance-based
features mentioned above fail to guide the effective setting
of probabilities PO(·) and PT (·) for CTMM, resulting in (1)
inaccuracy, due to the inability of accurate evaluation of roads
and paths; (2) inefficiency, as it requires much more candidate
roads for each point to cover its actual location, leading
to expensive evaluation on large-scale paths. To address the
above limitations, we design a neuralized HMM algorithm
with learned PO(·) and PT (·) probability functions to guide
more accurate and efficient path-finding for CTMM.

IV. METHODOLOGY

In this section, we present the proposed learning-enhanced
HMM model, denoted by LHMM.

A. Overview of LHMM

Based on the general HMM framework, we extend it to
the neuralized HMM algorithm by incorporating deep learn-
ing. Traditionally, the observation and transition probabilities
PO(·) and PT (·) are heuristically set and computed, which is
not suitable for CTMM. We thus aim to take advantage of

Multi-relational Representation Learning

Observation Probability Estimator

Road Network and Cellular Trajectories

Candidate Road
𝑐𝑐𝑖𝑖
𝑗𝑗

Current Point
𝑥𝑥𝑖𝑖

Trajectory 𝑋𝑋
𝑥𝑥|𝑋𝑋|

…

…

𝛼𝛼𝑖𝑖,1 𝛼𝛼𝑖𝑖,2 𝛼𝛼𝑖𝑖,|X|

Context-aware
Point Representation

MLP

MLP

Trajectory 𝑋𝑋 Moving Path 𝑐𝑐𝑖𝑖−1𝑘𝑘 → 𝑐𝑐𝑖𝑖
𝑗𝑗

Transition Probability Estimator

𝑃𝑃𝑂𝑂(𝑐𝑐𝑖𝑖
𝑗𝑗|xi)

HMM Path-finding Framework

MLP

𝑃𝑃𝑇𝑇(𝑐𝑐𝑖𝑖−1𝑘𝑘 → 𝑐𝑐𝑖𝑖
𝑗𝑗)

Mean

𝑃𝑃(𝑒𝑒2|𝑋𝑋)…𝑃𝑃(𝑒𝑒m|𝑋𝑋)

MLP

Explicit Features
of 𝑐𝑐𝑖𝑖−1𝑘𝑘 → 𝑐𝑐𝑖𝑖

𝑗𝑗 𝑃𝑃(𝑒𝑒1|𝑋𝑋)

Explicit Features
between
𝑐𝑐𝑖𝑖
𝑗𝑗 and 𝑥𝑥𝑖𝑖

𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥|𝑋𝑋|𝑥𝑥1 𝑥𝑥2 …
…

𝑒𝑒𝑚𝑚𝑒𝑒1 𝑒𝑒2 …
…

𝑥𝑥𝑖𝑖′

Fig. 2. The architecture of LHMM

neural networks to automatically set the two probabilities by
learned knowledge, instead of using heuristics.

The overall framework of our proposed algorithm LHMM
is shown in Figure 2. Specifically, it first utilizes a represen-
tation learning module to preserve multi-relational semantic
information in embeddings. Next, an observation probability
learner is designed to derive meaningful PO(·) by learning
knowledge obtained from explicit and implicit features. A
transition probability learner is then used to automatically set
PT (·) on top of the learned knowledge. Finally, the two learned
probabilities are used to guide the path-finding process under
HMM framework.

B. Multi-relational Representation Learning

To enable learned observation and transition probabilities
by neural networks, the primary task is to effectively represent
all elements (cell towers and road segments) of map-matching.
Particularly, it is important to capture the multi-relation among
all elements, so that useful semantic information can be
provided in representations for subsequent learning of PO(·)
and PT (·). This requirement is hardly supported by simple
representation techniques like the one-hot representation. We
thus present a multi-relational representation learning method
based on heterogeneous graph modeling.

Multi-relational Graph Construction. There are many
types of relationships among cell towers and road segments
(e.g. tower-road, tower-tower, and road-road relationships),
which provide great opportunities for representation learning
and CTMM processing. It is important to precisely denote
them by dense data structure for embedding learning.

To describe these relations, we construct a multi-relational
graph G = (Ve,Vct, E), where Ve and Vct contain all road

Multi-relational Graph
for CTMM

𝑒𝑒5 𝑒𝑒8
𝑒𝑒6 𝑒𝑒9

𝑒𝑒2

𝑒𝑒7
𝑒𝑒4

𝑥𝑥2
𝑥𝑥3 𝑥𝑥4

𝑥𝑥6𝑥𝑥5

𝑒𝑒5
𝑒𝑒4

𝑥𝑥1

𝑒𝑒3

𝑥𝑥2

𝑒𝑒1

𝑒𝑒2
𝑒𝑒5 𝑒𝑒8

𝑒𝑒7

𝑒𝑒6
𝑒𝑒9

𝑥𝑥3 𝑥𝑥4

𝑥𝑥5 𝑥𝑥6

𝑥𝑥3

𝑒𝑒6

Road-Road

Road-Cell Tower

Cell Tower-Cell Tower

GCN
GCN

GCN

M
ulti-relation

Aggregation

U
pdate

Em
beddings

Embedding Representations

e1 x4

Fig. 3. The Het-Graph Encoder

segments and all cell towers respectively (i.e. Ve = G.E). We
use V to represent all nodes in the graph (i.e. V = Ve ∪ Vct)
when there is no ambiguity. And E is an edge set involving
multiple types of directed edges. Specifically, three types of
relations are captured in G, including:

• Co-occurrence between roads and cell towers: given
a trajectory point xi ∈ X and a road segment in
corresponding traveled path ej ∈ Pg , we say they have
a co-occurrence relationship if the closest cell tower in
the trajectory to ej is xi. The edge (xi, CO, ej) ∈ E has
weights counting the number of co-occurrence. The high
co-occurrence correlation means that a trajectory point is
more likely to match its frequently interacting road.

• Sequentiality between cell towers: given a trajectory
X : x1, x2, . . . , x|X|, we say they have a sequentially
moving relationship in each two neighboring points xi

and xi+1. The edge (xi, SQ, xi+1) ∈ E reflects the
mobility patterns among cell towers. When a trajectory
point locates its actual location, the necessary calibration
information can be provided by trajectory contexts, where
points with a strong sequential relation to the current
point are likely to contribute more for its location cal-
ibration.

• Topological structure: there is an edge between two road
segments ei and ej , where ei, ej ∈ Ve are adjacent on the
road network. This edge is denoted as (ei, TP, ej) ∈ E ,
which represents the spatial proximity and the reachabil-
ity between roads.

In this way, each relation is represented by a type of edge,
and the graph G contains multi-relational information, which
can benefit the CTMM task. From these relations, higher-order
relationships can be mined to support map matching. Next, we
discuss the embedding representations for all nodes of G.

Het-Graph Encoder. Based on the multi-relational graph
G, we further design the Het-Graph Encoder to effectively
embed road segments and cell towers with synergistic repre-
sentations. It is able to fully preserve multi-relational semantic
information, so that the correlation between cell towers and
road segments can be easily captured.

Since G is a multi-relational graph, the representation learn-
ing calls for not only enabling strongly correlated nodes in
G to have similar embedded vectors but also jointly repre-

senting and balancing multiple relations. This requires: (1)
the representation of a node (i.e. a road segment or a cell
tower) should consider its neighbors’ information; (2) the
information sent from different types of neighbors should be
processed differently and adaptively. Inspired by R-GCNs [43],
we design the multi-relational message propagation as shown
in Figure 3. We specifically introduce it in the following.

The first step is to initialize the embedding. For each node
vi ∈ V , we use v⃗i ∈ R|V| denotes its one-hot representation,
which is then converted into a low-dimensional dense vector
by a learnable matrix Winit ∈ R|V|×d: h(0)

i = W⊤
init · v⃗i, where

h
(0)
i represents the embedding of vi at layer 0.
The second step is message passing. Each node receives

messages from its neighboring nodes, and processes them
separately based on different relation types. Given a node vi,
we derive its neighbor group N rel

i for each relation rel ∈ R,
where R indicates three types of relations in G. Each neighbor
group sends vi the set of messages of relation rel as

zreli =
1∣∣N rel
i

∣∣ ∑
vj∈N rel

i

W
(l)
relh

(l)
j (4)

where zreli is vi’s received message from its neighbor group
N rel

i of relation rel. h(l)
j denotes the embedding of vj in l-th

layer. W (l)
rel is a trainable parameter matrix.

The third step is to jointly aggregate the messages from all
neighbor groups and update the embedding of node vi as:

h
(l+1)
i = σ

(∑
rel∈R

Waggz
rel
i +W

(l)
0 h

(l)
i

)
(5)

where W0, Wagg are trainable parameters. We take ReLU as
activation function σ(·). After performing q iterations, we take
the node representations of the last step as the embeddings
x⃗i and e⃗j for cell towers and road segments respectively. In
this way, the embeddings preserve multi-relations in a shared
space, so that the downstream component can easily identify
the correlation between cell towers and road segments.

C. Observation Probability Learning

This part studies the learning of function PO(·) for ob-
servation probability, which is the likelihood of locating a
trajectory point on a candidate road. Existing HMM-based
methods typically evaluate it using explicit features with
physical meanings (e.g. distance), which are unfortunately
unsuitable for the CTMM task due to its high positioning
error, as mentioned above. To accurately locate the traveled
road of each point, a key issue is to precisely model their high-
order correlation from historical data, which is highly implicit
and influenced by trajectory contexts. Here, we first capture
implicit point-road correlation with contextual knowledge into
consideration. Then we further combine some useful explicit
features to obtain the observation probability PO(·).

Implicit Point-Road Correlation. Intuitively, the same cell
tower in different trajectories may match different locations,
which requires the modeling of dynamic trajectory contexts to
overcome location ambiguity and uncertainty. To enable the

current point to be capable of perceiving trajectory contexts,
we utilize an attentional network to merge such context
information into the current point representation, whereby we
can evaluate the high-order correlation between the trajectory
point and the candidate road based on contextual knowledge.

Specifically, we feed the current point embedding x⃗i into
query of the attention model, and perceive all point embed-
dings x⃗1, x⃗2, . . . , ⃗x|X| as key and value. The attention layer
self-adaptively employs the importance weights to summarize
point embeddings as the current context-aware point represen-
tation x⃗′

i:

x⃗′
i =

|X|∑
j=1

softmax (Wv · tanh (Wqx⃗i ⊕Wkx⃗j)) · x⃗j (6)

where Wq , Wk, and Wv are trainable parameters of attention
weights. ⊕ denotes concatenate operator. On top of context-
aware point representation, we can evaluate the implicit point-
road correlation P (cki |x′

i) by a multilayer perceptron:

P
(
cki |x′

i

)
= softmax

(
MLP

(
c⃗ki ⊕ x⃗′

i

))
(7)

where P (cki |x′
i) determines whether a candidate road is likely

to be the actual location of the current point under varying
trajectory contexts.

Learned Observation Probability. Here, we combine im-
plicit features and explicit features between a point and a can-
didate road to obtain the observation probability. In addition
to implicit features, it is also important to consider explicit
features. For example, the physical distance is necessary since
if a road segment is far away from the current point, it is
impossible to become the actual location of the user. Moreover,
the current point has a high probability to match a road
that frequently interacts with the cell tower. Therefore, we
combine the implicit point-road correlation and some explicit
features into the learned observation probability PO(·), which
is denoted as:

PO

(
cki |xi

)
= MLP

(
P
(
cki |x′

i

)
⊕DO

(
xi, c

k
i

))
(8)

where DO(xi, c
k
i) indicates the explicit features between the

point and the road, including batch-normalized Euclidean
distance and co-occurrence frequency.

D. Transition Probability Learning

This part studies the learning of function PT (·) for transition
probability. Formally, given two candidate road segments cji−1

and cki for two neighboring trajectory points xi−1 and xi

respectively, the transition probability evaluates the likelihood
of traveled path from xi−1 to xi following the shortest path
from cji−1 to cki . Existing methods take explicit features (e.g.
the length of moving path, the number of turns) only to
evaluate moving paths at a coarse-grained level. However,
these coarse-grained features are difficult to acutely detect
if a few roads occur deviations or detours. To accurately
identify unreasonable moving paths, we first capture implicit
trajectory-path correlation at a fine-grained level. Then we

further combine implicit features and some useful explicit
features to obtain the transition probability.

Implicit Trajectory-Path Correlation. Intuitively, each
road segment of the traveled path should be highly correlated
with the overall trajectory. Otherwise, if there are lots of low-
relevant road segments to the trajectory, this path is probably
not the traveled path. To identify detours and abnormal parts
of the moving path at a fine-grained level, we first evaluate
the likelihood of each road in the moving path belonging
to the trajectory, and further comprehensively consider these
likelihoods to evaluate the moving path.

Specifically, we first need to embed trajectory represen-
tation. A simple way is to use a mean layer to merge all
point embeddings of the trajectory. However, some points
are more important to determine whether the road belongs
to the trajectory, e.g., points closer to the road, and points
that frequently interact with the road. These semantics cannot
be captured by the above trajectory representation. Toward
this end, we provide an improved trajectory representation
approach with an attention-based neural network. For each
road el, we merge these interacted points in a weighted way
to generate trajectory representation X⃗l as:

X⃗l =

|X|∑
i=1

softmax
(
W ′

v · tanh
(
W ′

q e⃗l ⊕W ′
kx⃗i

))
· x⃗i (9)

Next, a multilayer perceptron is used to predict the likelihood
of a road belonging to the trajectory by:

P (el|X) = softmax
(

MLP
(
e⃗l ⊕ X⃗l

))
(10)

On top of P (el|X), we can easily evaluate the hidden rele-
vance of the moving path to the trajectory:

P
(
cji−1 → cki

)
=

1

|sp|
∑
el∈sp

P (el|X) (11)

where sp is the shortest path from cji−1 to cki , and |sp| is its
number of road segments.

Learned Transition Probability. Here, we combine im-
plicit features and explicit features of the moving path to ob-
tain the transition probability. In addition to implicit trajectory-
path correlation, some explicit features are also useful for
evaluating the moving path. For example, the traveled path
should have a similar length compared to the cellular trajec-
tory, since if the matching path is too long, it often means that
there are detours in the path. To avoid unnecessary turns on
the matching path, we assume that there is a similar number
of turns between the trajectory and the matching path. We
measure the number of turns based on the sum of angles of
every adjacent point or road segment. We denote these two
explicit features as DT (c

j
i−1 → cki). Afterwards, the learned

transition probability PT (·) can be set by:

PT

(
cji−1 → cki

)
= MLP

(
P
(
cji−1 → cki

)
⊕DT

(
cji−1 → cki

))
(12)

Training Process of PO(·) and PT (·). At last, we introduce
the detailed training process for the above components. The

neural network requires to be trained using historical cellular
trajectories with their traveled paths. The PO(·) and PT (·)
have their own independent neural networks.

For neuralized observation probability PO(·), we first assign
clear semantics to the implicit point-road correlation by a
classification task, which identifies the road segment with
positive or negative labels to the current point. Next, we fine-
tune the last MLP layer to obtain the observation probability.
We sample surrounding road segments of the current point
as training data, where the positive road segments that are
interacted with the current point, and the rest road segments
with negative labels. To balance labels, we take multiple un-
dersampling to perform the training process. For the transition
probability PT (·), we follow the same two steps. First, we
train the implicit trajectory-road correlation by classifying road
segments in the moving path with positive or negative labels to
the trajectory. Second, to evaluate the overall moving path, we
fine-tune the last MLP layer by predicting the ratio of traveled
roads to the moving path. All training target is to minimize
the cross-entropy between outputs and labels. To avoid the
overconfidence problem [44], we take the label smoothing
technique proposed by [45] in the cross-entropy function.

E. HMM Path-finding Framework

Based on the neuralized observation and transition proba-
bilities defined above, we further introduce the path-finding
process in Section IV-E1 and the optimizations to address the
detour caused by high positioning errors in Section IV-E2.

1) Path-finding process: Following previous HMM-based
methods [8], [12], [32], the path-finding process includes three
steps, i.e. candidate preparation, candidate graph construc-
tion, and viterbi-based path-finding.

Step 1 (Candidate Preparation). For each point on the
trajectory, we first retrieve its possible candidate road seg-
ments, which are potential locations of the point. Note that
for efficiency concerns, a point is only map-matched to its
candidate road segments in the path-finding process.

We select top-k road segments with observation probabili-
ties for the point xi as candidates, forming xi’s candidate road
set Ci. k is a trade-off between efficiency and accuracy. For
example, x3’s candidate road segments are c13, c

2
3 and c33 in

Figure 4.
Step 2 (Candidate Graph Construction). Given all can-

didate road sets, a candidate graph G′(V ′, E′) is generated to
describe the path-finding space. V ′ is derived from candidate
road sets C1 ∪ C2 ∪ · · · ∪ C|X|, and E′ is a set of edges
representing the shortest path between any two neighboring
candidate road segments cji−1 → cki , as depicted in Figure 4.

As mentioned in Section III-B, the HMM transforms the
problem of map-matching into how to search one candidate
path Pc : ci1 → cj2 → · · · → ck|X| from C1 to C|X| to match
entire trajectory X . With neuralized observation and transition
probabilities, the moving between neighboring candidate road
segments can be accurately evaluated by the score:

W
(
cji−1 → cki

)
= PT

(
cji−1 → cki

)
· PO

(
cki |xi

)
(13)

Candidate
Road Set

Trajectory
Point

Fig. 4. The candidate graph structure, where the blue edges are shortcuts.

And further, the candidate path can be evaluated by the
candidate path score:

W (Pc) =

|X|∑
i=2

W
(
cji−1 → cki

)
(14)

Step 3 (Viterbi-based Path-finding). Among all candidate
paths, we aim to search the optimal path P with the highest
candidate path score:

P = argmax
Pc

W (Pc), ∀Pc ∈ G′ (V ′, E′) (15)

We adopt the Viterbi algorithm, which shows excellent
performance in previous works [8], [46]. The Viterbi algorithm
utilizes dynamic programming, which finds the optimal path
to a candidate road segment cki relying on the information
of optimal paths to its predecessors (i.e. all cji−1 ∈ Ci−1).
Formally, given a candidate road segment cki , we can compute
the highest candidate path score into table f [·] and its optimal
predecessor into table pre[·]:

f
[
cki
]
= max

cji−1∈Ci−1

(
f
[
cji−1

]
+W

(
cji−1 → cki

))
(16)

pre
[
cki
]
= argmax

cji−1∈Ci−1

(
f
[
cji−1

]
+W

(
cji−1 → cki

))
(17)

According to the highest candidate path score table f [·]
and the best predecessor table pre[·], the optimal path can
be founded by:

ck|X| = argmax
cj|X|

f
[
cj|X|

]
, ∀cj|X| ∈ C|X| (18)

cji−1 = pre
[
cki
]
, i ∈ [2, |X|] (19)

the detail of the procedure path-finding is shown in Algorithm
1. By fusing learned knowledge into the HMM to guide the
path-finding process, we solve the locating of the noisy point
x1 in Figure 5(a). Unfortunately, we may still face inaccurate
matching on noisy points according to Observation 1.

Observation 1. Given a candidate road set Ci, the detour is
inevitably by the ordinary path-finding process if Ci has no
overlap with the traveled path, i.e. Ci ∩Pg = ∅. We call such
Ci as an unqualified candidate road set.

Algorithm 1 Path-finding Algorithm
Require: Road network G, a cellular trajectory X : x1 →

x2 → · · · → x|X|
Ensure: Best matching path P : ci1 → cj2 → · · · → ck|X|

1: Let f [·] denote the highest score computed so far;
2: Let pre[·] denote the parent of current candidate road;
3: Select candidate road set Ci for each point xi;
4: for all ck1 ∈ C1 do
5: f [ck1]← PO(c

k
1);

6: end for
7: for i← 2 to |X| do
8: for all cki ∈ Ci do
9: Fill highest candidate path score entry f [cki] as Equa-

tion (16);
10: Fill best predecessor entry pre[cki] as Equation (17);
11: end for
12: end for
13: f [·], pre[·]← Updated candidate graph by Algorithm 2;
14: P = Viterbi.backward(f [·], pre[·])
15: return P

cellular trajectory point candidate road

(a) Ordinary path-finding

matching result traveled path

shortcut

(b) Path-finding with shortcuts

Fig. 5. Illustration of shortcuts

As such, high positioning errors of cellular trajectories
see noisy points, which result in unqualified candidate road
sets and finally undermine the performance of the HMM.
For example, in Figure 5(a), the point x3 has an excessive
positioning error, leading to its all candidate road segments
are not in the traveled path (i.e. c13, c

2
3, c

3
3 /∈ Pg), making the

matching result with a detour.
To avoid the impact of unqualified candidate road sets, a

series of shortcuts (skipping edges) are required to provide
chances to skip them. For example, the shortcut path directly
connects c12 and c14, ignoring the noisy point x3 to remedy the
detour in Figure 5(b). Next, we discuss how to construct the
shortcut to skip the noisy point.

2) Optimization with shortcuts: From the above analysis,
a series of shortcuts need to be constructed in the candidate
graph, so that the negative impact of the unqualified candidate
road set can be remedied.

Shortcut Construction. We first pick up a series of candi-
date road segment pairs to establish the shortcut on the candi-
date graph. From experimental evaluation, one-hop shortcuts
almost avoid the impact of unqualified candidate road sets.
Specifically, for each candidate road segment cki , we build K
shortcuts with shortest paths from its one-hop road segments

Algorithm 2 Adding Shortcuts into Path-finding Process
Require: Road network G, a cellular trajectory X , the filled

highest candidate path score table f [·] and the filled best
predecessor table pre[·]

Ensure: Updated f [·] and pre[·] with shortcuts
1: for i← 3 to |X| do
2: for all cki ∈ Ci do
3: Search cki ’s best one-hop predecessor cji−2 as Equa-

tion (20);
4: Establish the shortcut sp between cji−2 and cki with

shortest path;
5: Obtain the projected road cui−1 from xi−1 to sp;
6: Calculate the shortcut score f ′ as Equation (21);
7: if f ′ > f [cki] then
8: f [cki]← f ′;
9: pre[cki]← cui−1;

10: pre[cui−1]← cji−2;
11: end if
12: end for
13: end for
14: return f [·], pre[·]

cji−2 ∈ Ci−2 to it. The one-hop predecessor is determined as:

cji−2 = argmax
cji−2,c

l
t−1

(
W (cji−2 → cli−1) +W (cli−1 → cki)

)
(20)

where cji−2 ∈ Ci−2 and cli−1 ∈ Ci−1. The setting of K is a
trade-off between computational overhead and accuracy, and
the experimental evaluation shows that one shortcut (i.e. K =
1) is sufficient.

Shortcut Score Setting. We assign the score to the can-
didate path with shortcuts. Evaluating the candidate path
by Equation (14) requires the same number of transitions
(between candidate road segments of consecutive points), but
the path with shortcuts has a reduced number since some
candidate road sets are skipped. Thus for a fair comparison
between candidate paths, we need to restore the road segments
of skipped candidate road sets. Specifically, given a shortcut
cji−2 → cki , we project xi−1 to its closest road segment cui−1 in
this shortcut, and use this projected road segment to transform
the shortcut to cji−2 → cui−1 → cki . The score of the candidate
path to cki with the shortcut is defined as:

f ′ = f [cji−2] +W (cji−2 → cui−1) +W (cui−1 → cki) (21)

At last, we present how to establish shortcuts on the
candidate graph and how to improve the highest candidate
path score table f [·] and the best predecessor table pre[·],
whereby the path-finding process enables skipping unqualified
candidate road set using shortcuts. The detailed procedure is
shown in Algorithm 2, which should be inserted into line 13
of Algorithm 1.

V. EXPERIMENTS
In this section, we conduct extensive experiments to evaluate

our approach. We first present the experimental settings. Next,

category Hangzhou Xiamen
road segments 92,913 64,828
intersections 67,330 37,591

all cellular trajectory points 3.61 million 1.18 million
all GPS trajectory points 9.73 million 4.98 million

cellular trajectory points per trajectory 34 40
GPS trajectory points per trajectory 81 88

average cellular sampling interval (s) 67 42
maximum cellular sampling interval (s) 247 185
average cellular sampling distance (m) 730 650
median cellular sampling distance (m) 493 455

TABLE I
DATASET CHARACTERISTIC

we describe the criteria that we applied. Then we compare our
approach with methods designed for both GPS trajectories and
cellular trajectories, and report the major results with analysis
for the following questions:

• Q1: What is the performance of LHMM compared with
existing map-matching methods?

• Q2: How does each designed component influence the
performance of LHMM?

• Q3: What is the performance of LHMM under different
data distributions?

• Q4: How do the hyper-parameters influence the perfor-
mance of LHMM?

• Q5: How does LHMM work intuitively?

A. Experimental Setting
1) Dataset description: In our experiments, we use two

real trajectory datasets, which are located in Hangzhou, China,
and Xiamen, China, getting from a mobile communication
operator. The dataset contains the cellular trajectory and the
corresponding GPS sampling sequence for the same travel
path. The ground-truth path is generated by the GPS sampling
sequence through a classical HMM algorithm [8]. Before
matching, the cellular trajectory initially removes noise and
smooths through a series of filters as described in [12],
including the speed filter, α-trimmed mean filter, and direction
filter. Table I exhibits the main data characteristic.

2) Parameter setup: We set the dimension of embeddings
and all latent vectors as 128. All of the trainable parameters
are optimized by Adam based on the training set, and hyper-
parameters are chosen based on the validation set. The initial
learning rate and weight decay rate are 1×10−3 and 1×10−4

respectively. The label smoothing is 0.1 for cross-entropy loss.
To accelerate computation, we implement Het-Encoder with
the message passing framework [47] in a parallel manner.
Through an experimental comparison, the number of iterations
q in Het-Encoder is set as 2 showing great performance. The
candidate number k of each point is set to 30 for CTMM and
45 for baselines. The HMM can use a precomputation table to
avoid the bottleneck of repeated shortest path searches [11].

3) Evaluation criteria: We evaluate the matching quality,
which is measured by the comparison of the ground-truth path
and the matching path on road segment level and coarser-
grained corridor level, including precision, recall, RMF, CMF,
hitting ratio, and time.

Ground-truth Path

Result Path

Missing Part 1

Redundant Part 2

(a) RMF

Result Path Corridor

Ground-truth path

Mismatch Part 1

Mismatch Part 2

(b) CMF

Fig. 6. Illustration of criteria

Precision and Recall. Precision and recall are commonly
used accuracy metrics [12], [15]. Precision is defined as the
ratio of the total length of the correctly-matched path to the
total length of the matching path. Recall is the ratio of the
total length of the correctly-matched path to the total length
of the ground truth path.

RMF. Since precision and recall cannot simultaneously
account for missing and redundant mismatched road segments,
we design an error metric: Route Mismatch Fraction (RMF),
which is defined by the following:

RMF =

∑
length of mismatched road segments

length of the ground-truth path
(22)

A smaller RMF means better accuracy. RMF is the strictest
error indicator as shown in Figure 6(a), which focuses on the
ratio of the length of missing and redundant mismatched road
segments to the ground-truth path length.

CMF. Since the matching path often locates on parallel
side roads of the ground-truth path (e.g. urban viaduct and its
underlying roads), it can be regarded as a successful matching
for some low-demanding applications. Towards this end, we
propose coarser-grained Corridor Mismatch Fraction (CMF),
which uses a x-meter-wide corridor to wrap the matching path
and to measure matching accuracy as:

CMF =

∑
corridor uncovered length

length of the ground-truth path
(23)

A smaller CMF means better accuracy. As shown in Figure
6(b), the CMF focuses on the ratio of the uncovered ground-
truth path length of the matching path corridor to the ground-
truth path length. The common corridor radius is 50 meters,
recorded as CMF50, which describes the matching path that
approximately coincides with the ground-truth path.

Hitting Ratio. To evaluate HMM-based methods’ quality of
candidate preparation, we propose Hitting Ratio (HR), which
focuses on the proportion of candidate road sets covering the
traveled path. The hitting ratio only suits the HMM-based
methods, and reflects the ability of the HMM-based method
to locate traveled roads for trajectory points.

Avg Time. To evaluate the efficiency, we use average
inference time (Avg Time), which is defined as the average
running time required to transform cellular trajectories into
matching results.

4) Baselines: We consider the following methods as base-
lines to compare.

The methods designed for GPS trajectories include:

Dataset Hangzhou Xiamen
Metric Precision Recall RMF CMF50 Avg Time (s) Precision Recall RMF CMF50 Avg Time (s)

Methods designed for GPS trajectory map-matching
STM [8] 0.388 0.476 1.237 0.225 0.040 0.411 0.498 1.050 0.198 0.044

IVMM [10] 0.409 0.518 1.125 0.188 0.101 0.428 0.529 0.936 0.172 0.136
IFM [32] 0.430 0.522 1.024 0.178 0.045 0.451 0.537 0.889 0.167 0.048

DeepMM [37] 0.446 0.544 0.881 0.172 0.951 0.478 0.568 0.785 0.158 1.284
MCM [34] 0.449 0.552 0.893 0.169 0.033 0.479 0.572 0.780 0.152 0.039

TransformerMM [38] 0.455 0.552 0.838 0.170 1.667 0.483 0.577 0.769 0.153 1.857
Methods designed for CTMM

CLSTERS [41] 0.443 0.551 0.922 0.173 0.043 0.470 0.563 0.805 0.154 0.048
SNet [12] 0.446 0.555 0.891 0.169 0.034 0.475 0.565 0.792 0.153 0.041

THMM [42] 0.461 0.562 0.815 0.165 0.041 0.486 0.583 0.767 0.148 0.045
DMM [15] 0.467 0.566 0.784 0.163 0.853 0.489 0.594 0.755 0.145 0.916

Our method
LHMM 0.516 0.613 0.670 0.126 0.032 0.547 0.667 0.641 0.124 0.037

Improved 10.49% 8.30% 14.54% 22.69% 3.03% 11.86% 12.28% 8.79% 15.09% 5.12%

TABLE II
OVERALL PERFORMANCE.

• STM [8]. ST-Matching (STM in short) is a classical
approach designed for low-sampling-rate GPS sequences,
which takes the topological structure and the temporal
constraints into account.

• IVMM [10]. It uses a voting strategy to describe the
mutual influence between GPS points.

• IFM [32]. IF-Matching (IFM) fuses the surrounding
speed to describe moving targets.

• DeepMM [37]. It takes LSTM-based seq2seq and atten-
tion models for sparse and noisy GPS trajectories.

• MCM [34]. It models map-matching as finding a com-
mon sub-sequence between the GPS trajectory and the
potential routes.

• TransformerMM [38]. It takes Transformer instead of
LSTM in the seq2seq.

The methods designed for CTMM include:
• CLSTERS [41]. It takes a series of calibration manners to

smooth cellular trajectories.
• SNet [12]. SnapNet (SNet) combines digital map hints

and a number of heuristics in the estimation process.
• THMM [42]. It designs the geometric, topological, and

probabilistic characteristics for CTMM.
• DMM [15]. It is relied on the seq2seq model for CTMM,

and adopts a reinforcement learning component to en-
hance the map-matcher.

B. (Q1) Overall Performance

In this section, we validate the superiority of LHMM on
two datasets. Table II exhibits the results of our method’s
performance compared with two types of baselines, including
the methods designed for GPS trajectories and CTMM.

Accuracy. According to the results, we note the following
key observations. (1) The methods tailored for CTMM (e.g.
DMM, THMM) outperform the methods designed for GPS
trajectories (e.g. MCM, TransformerMM) since they customize
a series of heuristic characteristics from the digital map
to overcome high positioning errors. (2) The learning-based
methods achieve better results than HMM-based methods on

RMF, since the implicit knowledge provides more accurate
information to locate the road where the trajectory point is
located. (3) While in coarser-grained corridor level, HMM-
based methods THMM and MCM achieve similar accuracy to
DMM and TransformerMM respectively on CMF50 due to the
HMM’s high stability.

The LHMM achieves the best accuracy on all metrics.
Taking the CMF50 as an example, LHMM achieves 23.63%
and 22.69% accuracy gains compared to the strongest HMM-
based model THMM and the strongest seq2seq-based model
DMM respectively. Such huge improvements demonstrate the
effectiveness of combining the HMM and learned knowledge,
which integrates the robustness of the HMM and is enhanced
by the implicit features to guide the path-finding process.

The possible reasons for the improved accuracy are as fol-
lows: (1) LHMM fully captures the multi-relational knowledge
useful for the CTMM task, while DMM simply transforms
the cell tower to the embedding with auto-encoder and RNN,
ignoring abundant semantic information. (2) LHMM considers
trajectory context to eliminate ambiguity and embeds learned
knowledge into observation and transition probabilities, while
other HMM-based approaches only take explicit features to
evaluate roads and paths. (3) The shortcut structure provides
critical skipping edges on the candidate graph to alleviate the
impact of unqualified candidate road sets. With the above com-
ponents, LHMM achieves state-of-the-art performances. We
will further decompose the performance of these components
in Section V-C.

Running efficiency. We also evaluate the running efficiency.
From Table II, we observe that the HMM-based method
(e.g. MCM with 0.033 seconds/per trajectory) is fast than
the seq2seq-based method (e.g. DMM with 0.853 seconds/per
trajectory). This is because seq2seq methods are limited by
the weak parallelism inference of RNN and suffer from large
matrix operations. In contrast, the observation and transition
probabilities of the HMM can be calculated in parallel, and
the HMM path-finding process only requires simple numer-
ical calculations using dynamic programming. We note that

Dataset Variant Precision CMF50 HR

Hangzhou

LHMM 0.516 0.126 0.953
LHMM-E 0.457 0.142 0.931
LHMM-H 0.489 0.136 0.942
LHMM-O 0.428 0.178 0.920
LHMM-T 0.472 0.155 0.926
LHMM-S 0.484 0.140 0.937
STM 0.388 0.225 0.874
STM+S 0.405 0.189 0.911

Xiamen

LHMM 0.545 0.125 0.965
LHMM-E 0.494 0.144 0.938
LHMM-H 0.517 0.142 0.942
LHMM-O 0.462 0.158 0.931
LHMM-T 0.524 0.135 0.952
LHMM-S 0.516 0.139 0.944
STM 0.411 0.198 0.882
STM+S 0.432 0.170 0.915

TABLE III
ABLATIONS RESULTS.

LHMM achieves the fastest matching speed (0.032 seconds/per
trajectory). The modeling of implicit features for PO(·) and
PT (·) improve the ability to locate the traveled locations under
high positioning errors, thus allowing LHMM to use a smaller
number of candidate roads k for faster matching.

C. (Q2) Ablation Results

We further conduct ablation tests to investigate the effect of
all components of LHMM. Table III reports the results of all
variant models.

Effect of Het-Encoder. To investigate the effectiveness of
Het-Encoder, we design the following variants:

• LHMM-E. We replace the graph-based encoder layer with
an MLP embedding layer.

• LHMM-H. we replace the heterogeneous graph neural
network in the Het-Graph Encoder with a homogeneous
graph neural network (e.g. GCNs [48]).

From the ablation results, we observe that the performance of
LHMM-E falls behind that of LHMM-H, which proves that the
multi-relational graph provides useful information for CTMM,
and the graph-based encoder is better than the MLP embedding
layer to capture the graph’s abundant semantic information.
The performance of LHMM-H falls behind that of LHMM,
indicating that these multi-relations tailored for CTMM need
to be embedded in a balanced way, so that the heterogeneity
of the multi-relational graph can be fully extracted.

Effect of Learned Observation and Transition Proba-
bilities.. To investigate the influence of implicit features for
PO(·) and PT (·), we design the following variants:

• LHMM-O. We remove the implicit point-road correlation
in the observation probability.

• LHMM-T. We remove the implicit trajectory-path corre-
lation in the transition probability.

By integrating the implicit features, the performance increase
is remarkable (e.g. from LHMM-O 0.178 and LHMM-T 0.155
to LHMM 0.126 on CMF50). This proves the superiority of
the learned observation and transition probabilities that are
empowered by implicit knowledge.

Effect of Shortcut. To investigate the effectiveness of the
shortcut structure, we design the following variants:

• LHMM-S. We remove the shortcut structure from LHMM.
• STM, STM+S. We add the shortcut structure into other

HMM-based methods.
From the results of LHMM-S, we observe that the shortcut
structure obviously improves the performance from LHMM-S
0.140 to LHMM 0.125 on CMF50, which indicates that the
shortcut remedies the impact of unqualified candidate road
sets. Comparing the STM and STM+S, we observe that the
shortcut is a general component useful for all HMM-based
methods, boosting its hitting ratio from 0.874 to 0.911.

D. (Q3) Robustness Analysis

We evaluate the performance against the high positioning
error and the sparse sampling rate under different attributes of
input cellular trajectories.

Impact of area of the cellular trajectory. We first evaluate
varying areas of cellular trajectories. As we all know, the rural
area has few and sparse cell towers, in contrast, the urban area
has well-established infrastructure and high-density cell tower
distribution, so that the distance to the city center can indirectly
reflect the positioning error and the sparsity of the cellular
trajectory. We divide the dataset into 5 levels in terms of the
distance to the city center. Figure 7(a) reports that LHMM
achieves stable performance in both urban and rural areas. In
rural areas, although the density of cell towers is sparse, the
alternative paths are limited. LHMM utilizes physical features
to achieve comparable matching results. While the accuracy
of DMM is greatly affected since the seq2seq model suffers
from insufficient coverage of historical trajectories. In urban
areas, the road network is dense and complex. LHMM locates
candidate roads with context-aware knowledge in complex
environments, avoiding local optimal matching.

Impact of sampling rate. The sampling density directly
influences the matching difficulty. We test LHMM at 7 levels
of sampling rates, including 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4
sampling per minute. From Figure 7(b), we observe that as the
sampling rate decreases, the matching difficulty also increases
continuously. Compared with DMM and STM, LHMM is least
affected by the decrease of sampling rate relying on trajectory
context and explicit features, while ordinary HMM algorithms
cannot combat such sparse cellular trajectories using spatial
features only. For the seq2seq-based model DMM, the ex-
tremely sparse sampling rate is a fatal blow to the encoder-
decoder architecture, since the encoder cannot provide enough
guidance for the decoder to fill the long and uncertain path.

E. (Q4) Parametric Analysis

We evaluate the influence of main hyper-parameters and
different data scales on LHMM.

Impact of candidate number. We further explore the
impacts of the number of candidate road segments k. From
Figure 8, we observe that as the number k of candidate roads
increases from 10 to 60 for a point, the matching accuracy
does not continuous improvement. Because more candidate
road segments mean more irrelevant roads, which bring more
noise interference, making map-matching more difficult.

2 4 6 8 10 12 14 16

0.15

0.2

0.25

Distance to city center (km)

C
M

F5
0

LHMM DMM STM

(a) Impact of area

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.15

0.2

0.25

Sampling rate (/min)

C
M

F5
0

LHMM DMM STM

(b) Impact of sampling rate

Fig. 7. Impact of varying input cellular trajectories

10 20 30 40 50 60

0.13

0.14

0.15

Candidate number k

C
M

F5
0

Fig. 8. Impact of candidate number

0 1 2 3 4 5 6
0.12

0.13

0.14

0.15

Shortcut number K

C
M

F5
0

Fig. 9. Impact of shortcut number

Impact of shortcut number. We explore the impacts of the
number of shortcuts. For a candidate road segment, we test the
K shortcuts with its best one-hop predecessors according to
Equation (20). Figure 9 reports that from no shortcut to one
shortcut brings a significant boost, since the candidate road
sets have chances to be skipped. While there is no steady
improvement for more shortcuts according to experiments, this
indicates that one shortcut is sufficient to remedy most of the
impact of unqualified candidate road sets.

Impact of Data Scale. The data scale of historical trajecto-
ries directly affects the performance of the neural network. We
test the impact of varying data scales for one cell tower and
all cell towers. For one cell tower, Figure 10(a) reports that
with the increase of the trajectories that interact with the cell
tower, LHMM has more accurate in locating its traveled road.
After about 20 associated trajectories, the CMF50 no longer
decreases. The possible reason might be that more trajectories
follow the same driving pattern, which does not bring more
effective localization information. For all cell towers, Figure
10(b) reports that as the number of historical trajectories
increases, the embedding quality and locating ability are also
improved. More and more areas of the city are covered
and explored by historical trajectories, enabling continuous
improvement in accuracy.

F. (Q5) Visualization of LHMM

To intuitively observe the effectiveness of our method, we
exhibit a real and typical case map matched by LHMM and the
strongest baseline DMM. Figure 11(a) reports the performance
of LHMM. In this challenging situation, LHMM still maintains
high accuracy and robustness (CMF 0.147), which indicates
that LHMM overcomes the interference of high positioning
errors. In contrast, the DMM does not match properly (CMF

0 5 10 15 20 25

0.15

0.2

0.25

Number of associated trajectories

C
M

F5
0

(a) Impact of varying data scales to
one cell tower

0 2,000 4,000 6,000 8,000
0.12

0.14

0.16

0.18

Number of associated trajectories

C
M

F5
0

(b) Impact of varying data scales to
all cell towers

Fig. 10. Impact of data scale

RMF: 0.596
CMF: 0.147

1KM

cellular trajectory point

ground-truth path
matching corridor

(a) Matching by LHMM

RMF: 0.835
CMF: 0.424

1KM

cellular trajectory point

ground-truth path
matching corridor

(b) Matching by DMM

Fig. 11. Real cases on challenging situations

0.424) in sparse and noisy situations as shown in Figure 11(b).
The reason is that DMM suffers from error propagation of
RNN. Once a road is incorrectly matched, it will mislead
the generation of subsequent roads. LHMM has a powerful
correction capability of the HMM, and the learned PO(·) and
PT (·) enable us to accurately locate the traveled positions.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Founda-
tion of China (Grant No. 62102277, 62272334, 62072125, and
61872258), Natural Science Foundation of Jiangsu Province,
China (Grant Nos. BK20210703 and BK20211307), the major
project of natural science research in universities of Jiangsu
province under grant number 20KJA520005, the priority aca-
demic program development of Jiangsu higher education insti-
tutions, young scholar program of Cyrus Tang Foundation, and
the research work described in this paper is partially conducted
in the JC STEM Lab of Data Science Foundations funded by
The Hong Kong Jockey Club Charities Trust.

VI. CONCLUSION

In this paper, we have developed a learning-enhanced HMM
map-matching approach for cellular trajectories. A represen-
tation learning component is designed to fully capture multi-
relational information tailored for the CTMM task. A learned
observation probability captures the implicit context-aware
correlation between roads and points for better positioning
denoising, and a learned transition probability models the
hidden relevance between moving paths and trajectories. These
two probabilities then guide the path-finding process on an
improved candidate graph. Extensive experiments on two large
real-world datasets show that our approach achieves high
accuracy and robustness for the CTMM task.

REFERENCES

[1] S. Prasad, J. Rachna, O. Khalaf, and D.-N. Le, “Map matching al-
gorithm: Real time location tracking for smart security application,”
Telecommun Radio Eng, vol. 79, no. 13, 2020.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in VLDB, 2005, pp. 853–864.

[3] A. Fang, X. Peng, J. Zhou, and L. Tang, “Research on the map-matching
and spatial-temporal visualization of expressway traffic accident infor-
mation,” in ICITE. IEEE, 2018, pp. 23–27.

[4] R. He, J. Cao, L. Zhang, and D. Lee, “Statistical enrichment models for
activity inference from imprecise location data,” in IEEE INFOCOM,
2019, pp. 946–954.

[5] E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada, “Clustering
weekly patterns of human mobility through mobile phone data,” IEEE
Trans. Mob. Comput., vol. 17, no. 4, pp. 817–830, 2017.

[6] R. Becker, R. Cáceres, K. Hanson, S. Isaacman, J. M. Loh,
M. Martonosi, J. Rowland, S. Urbanek, A. Varshavsky, and C. Volinsky,
“Human mobility characterization from cellular network data,” Commun.
ACM, vol. 56, no. 1, pp. 74–82, 2013.

[7] M. T. Rahman, R. T. Khan, M. R. Khandaker, M. Sellathurai, and
M. S. A. Salan, “An automated contact tracing approach for control-
ling covid-19 spread based on geolocation data from mobile cellular
networks,” IEEE Access, vol. 8, pp. 213 554–213 565, 2020.

[8] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate gps trajectories,” in ACM SIGSPATIAL
GIS, 2009, pp. 352–361.

[9] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in ACM SIGSPATIAL GIS, 2009, pp. 336–343.

[10] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-
voting based map matching algorithm,” in MDM, 2010, pp. 43–52.

[11] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” GIS, vol. 32, no. 3, pp. 547
– 570, 2018.

[12] R. Mohamed, H. Aly, and M. Youssef, “Accurate real-time map matching
for challenging environments,” IEEE TITS, vol. 18, no. 4, pp. 847–857,
2016.

[13] A. Viel, D. Gubiani, P. Gallo, A. Montanari, A. Dalla Torre, F. Pit-
tino, and C. Marshall, “Map matching with sparse cellular fingerprint
observations,” in UPINLBS. IEEE, 2018, pp. 1–10.

[14] A. Dalla Torre, P. Gallo, D. Gubiani, C. Marshall, A. Montanari,
F. Pittino, and A. Viel, “A map-matching algorithm dealing with sparse
cellular fingerprint observations,” Geo Spat Inf Sci, vol. 22, no. 2, pp.
89–106, 2019.

[15] Z. Shen, W. Du, X. Zhao, and J. Zou, “Dmm: fast map matching for
cellular data,” in ACM MobiCom, 2020, pp. 1–14.

[16] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in AAAI, vol. 31, no. 1, 2017.

[17] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” NIPS, vol. 28,
2015.

[18] S. Jiang and M. de Rijke, “Why are sequence-to-sequence models so
dull? understanding the low-diversity problem of chatbots,” arXiv, 2018.

[19] P. Chao, Y. Xu, W. Hua, and X. Zhou, “A survey on map-matching
algorithms,” in ADC. Springer, 2020, pp. 121–133.

[20] L. Jiang, C. Chen, C. Chen, H. Huang, and B. Guo, “From driving
trajectories to driving paths: a survey on map-matching algorithms,”
CCF Transactions on Pervasive Computing and Interaction, pp. 1–16,
2022.

[21] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-
matching algorithms for transport applications: State-of-the art and
future research directions,” Transportation research part c: Emerging
technologies, vol. 15, no. 5, pp. 312–328, 2007.

[22] C. E. White, D. Bernstein, and A. L. Kornhauser, “Some map matching
algorithms for personal navigation assistants,” Transportation research
part c: emerging technologies, vol. 8, no. 1-6, pp. 91–108, 2000.

[23] D. Bernstein, A. Kornhauser et al., “An introduction to map matching
for personal navigation assistants,” 1996.

[24] A. Mosig and M. Clausen, “Approximately matching polygonal curves
with respect to the fréchet distance,” Comput. Geom. Theory Appl.,
vol. 30, no. 2, pp. 113–127, 2005.

[25] R. R. Joshi, “A new approach to map matching for in-vehicle navigation
systems: the rotational variation metric,” in ITSC. IEEE, 2001, pp. 33–
38.

[26] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland, “A general
map matching algorithm for transport telematics applications,” GPS
solutions, vol. 7, no. 3, pp. 157–167, 2003.

[27] M. A. Quddus, R. B. Noland, and W. Y. Ochieng, “Validation of map
matching algorithms using high precision positioning with gps,” The
Journal of Navigation, vol. 58, no. 2, pp. 257–271, 2005.

[28] F. Abdallah, G. Nassreddine, and T. Denoeux, “A multiple-hypothesis
map-matching method suitable for weighted and box-shaped state es-
timation for localization,” IEEE TITS, vol. 12, no. 4, pp. 1495–1510,
2011.

[29] D. Obradovic, H. Lenz, and M. Schupfner, “Fusion of map and sensor
data in a modern car navigation system,” VLSI, vol. 45, no. 1, pp. 111–
122, 2006.

[30] M. A. Quddus, R. B. Noland, and W. Y. Ochieng, “A high accuracy
fuzzy logic based map matching algorithm for road transport,” J. Intell.
Transport. Syst., vol. 10, no. 3, pp. 103–115, 2006.

[31] S. Syed and M. E. Cannon, “Fuzzy logic based-map matching algorithm
for vehicle navigation system in urban canyons,” in Proceedings of the
2004 National Technical Meeting of the Institute of Navigation, 2004,
pp. 982–993.

[32] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen, “If-matching: Towards
accurate map-matching with information fusion,” IEEE TKDE, vol. 29,
no. 1, pp. 114–127, 2016.

[33] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and
L. Girod, “Accurate,{Low-Energy} trajectory mapping for mobile de-
vices,” in NSDI, 2011.

[34] W. Li, Y. Wang, D. Li, and X. Xu, “Mcm: A robust map matching
method by tracking multiple road candidates,” in ICAAM. Springer,
2022, pp. 231–243.

[35] Y. Zhang and X. Sui, “Rcivmm: A route choice-based interactive voting
map matching approach for complex urban road networks,” TBD, 2021.

[36] B. Liang, T. Wang, S. Li, W. Chen, H. Li, and K. Lei, “Online learning
for accurate real-time map matching,” in PAKDD, 2016, pp. 67–78.

[37] J. Feng, Y. Li, K. Zhao, Z. Xu, T. Xia, J. Zhang, and D. Jin, “Deepmm:
deep learning based map matching with data augmentation,” IEEE TMC,
vol. 21, no. 7, 2022.

[38] Z. Jin, J. Kim, H. Yeo, and S. Choi, “Transformer-based map matching
model with limited ground-truth data using transfer-learning approach,”
arXiv, 2021.

[39] C. Chen, X. Zhang, Y. Dong, H. Dong, and F. Rao, “Map-matching
based on driver behavior model and massive trajectories,” in IEEE ITSC,
2014, pp. 2817–2822.

[40] Y. Zhang and Y. He, “An advanced interactive-voting based map
matching algorithm for low-sampling-rate gps data,” in ICNSC. IEEE,
2018, pp. 1–7.

[41] H. Wu, W. Sun, B. Zheng, L. Yang, and W. Zhou, “Clsters: A general
system for reducing errors of trajectories under challenging localization
situations,” IMWUT, vol. 1, no. 3, pp. 1–28, 2017.

[42] R. Chen, S. Yuan, C. Ma, H. Zhao, and Z. Feng, “Tailored hidden
markov model: A tailored hidden markov model optimized for cellular-
based map matching,” IEEE TIE, vol. 69, no. 12, pp. 13 818–13 827,
2022.

[43] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in ESWC. Springer, 2018, pp. 593–607.

[44] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in ICML. PMLR, 2017, pp. 1321–1330.

[45] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing
help?” NeurIPS, vol. 32, 2019.

[46] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, 1973.

[47] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in ICML. PMLR,
2017, pp. 1263–1272.

[48] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv, 2016.

[49] M. Srivatsa, R. Ganti, J. Wang, and V. Kolar, “Map matching: Facts and
myths,” in ACM SIGSPATIAL GIS, 2013, pp. 484–487.

[50] Y.-L. Hsueh, H.-C. Chen, and W.-J. Huang, “A hidden markov model-
based map-matching approach for low-sampling-rate gps trajectories,”
in IEEE SC2, 2017, pp. 271–274.

[51] W. Wang, W. Zhang, S. Liu, Q. Liu, B. Zhang, L. Lin, and H. Zha,
“Beyond clicks: Modeling multi-relational item graph for session-based
target behavior prediction,” in WWW, 2020, pp. 3056–3062.

[52] M. Hashemi and H. A. Karimi, “A weight-based map-matching al-
gorithm for vehicle navigation in complex urban networks,” J. Intell.
Transp. Syst. Technol. Plann. Oper., vol. 20, no. 6, pp. 573–590, 2016.

[53] X. Liu, K. Liu, M. Li, and F. Lu, “A st-crf map-matching method for
low-frequency floating car data,” IEEE TITS, vol. 18, no. 5, pp. 1241–
1254, 2016.

[54] K. Par and O. Tosun, “Parallelization of particle filter based localization
and map matching algorithms on multicore/manycore architectures,” in
IEEE IV, 2011, pp. 820–826.

[55] R. R. Joshi, “A new approach to map matching for in-vehicle navigation
systems: the rotational variation metric,” in IEEE ITSC, 2001, pp. 33–38.

[56] C. Feijoo, J. Ramos, and F. Perez, “A system for fleet management
using differential gps and vhf data transmission mobile networks,” in
IEEE VNIS, 1993, pp. 445–448.

[57] M. Chen, Y. Liu, and X. Yu, “Predicting next locations with object
clustering and trajectory clustering,” in PAKDD, 2015, pp. 344–356.

[58] J. A. Alvarez-Garcia, J. A. Ortega, L. Gonzalez-Abril, and F. Velasco,
“Trip destination prediction based on past gps log using a hidden markov
model,” Expert Syst. Appl., vol. 37, no. 12, pp. 8166–8171, 2010.

[59] R. Kühne, R.-P. Scbäfer, J. Mikat, K.-U. Thiessenhusen, U. Böttger, and
S. Lorkowski, “New approaches for traffic management in metropolitan
areas,” IFAC Proc. Vol., vol. 36, no. 14, pp. 209–214, 2003.

[60] L. Lv, M. Chen, Y. Liu, and X. Yu, “A plane moving average algorithm
for short-term traffic flow prediction,” in PAKDD, 2015, pp. 357–369.

[61] L. X. Pang, S. Chawla, W. Liu, and Y. Zheng, “On detection of emerging
anomalous traffic patterns using gps data,” Data Knowl. Eng., vol. 87,
pp. 357–373, 2013.

[62] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag, “Adaptive
fastest path computation on a road network: a traffic mining approach,”
in VLDB, 2007, pp. 794–805.

[63] L.-Y. Wei, Y. Zheng, and W.-C. Peng, “Constructing popular routes from
uncertain trajectories,” in ACM SIGKDD, 2012, pp. 195–203.

[64] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ intelligence,” IEEE TKDE, vol. 25, no. 1,
pp. 220–232, 2011.

[65] Z. Shen, W. Du, X. Zhao, and J. Zou, “Retrieving similar trajectories
from cellular data at city scale,” arXiv, 2019.

[66] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis,
“Parallel trajectory similarity joins in spatial networks,” VLDB, vol. 27,
no. 3, pp. 395–420, 2018.

[67] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “Tra-
jcompressor: An online map-matching-based trajectory compression
framework leveraging vehicle heading direction and change,” TITS,
vol. 21, no. 5, pp. 2012–2028, 2019.

[68] A. Karatzoglou, A. Jablonski, and M. Beigl, “A seq2seq learning
approach for modeling semantic trajectories and predicting the next
location,” in GIS, 2018, pp. 528–531.

[69] R. H. Zhang, Q. Liu, A. X. Fan, H. Ji, D. Zeng, F. Cheng, D. Kawahara,
and S. Kurohashi, “Minimize exposure bias of seq2seq models in joint
entity and relation extraction,” arXiv preprint arXiv:2009.07503, 2020.

[70] M. Hashemi and H. A. Karimi, “A critical review of real-time map-
matching algorithms: Current issues and future directions,” Comput.
Environ. Urban Syst., vol. 48, pp. 153–165, 2014.

[71] B. Custers, W. Meulemans, M. Roeloffzen, B. Speckmann, and K. Ver-
beek, “Physically consistent map matching,” in GIS, 2022, pp. 1–4.

