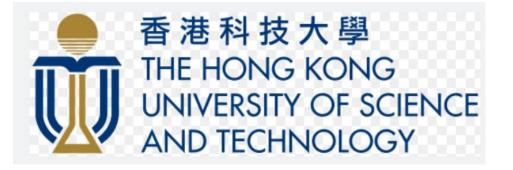
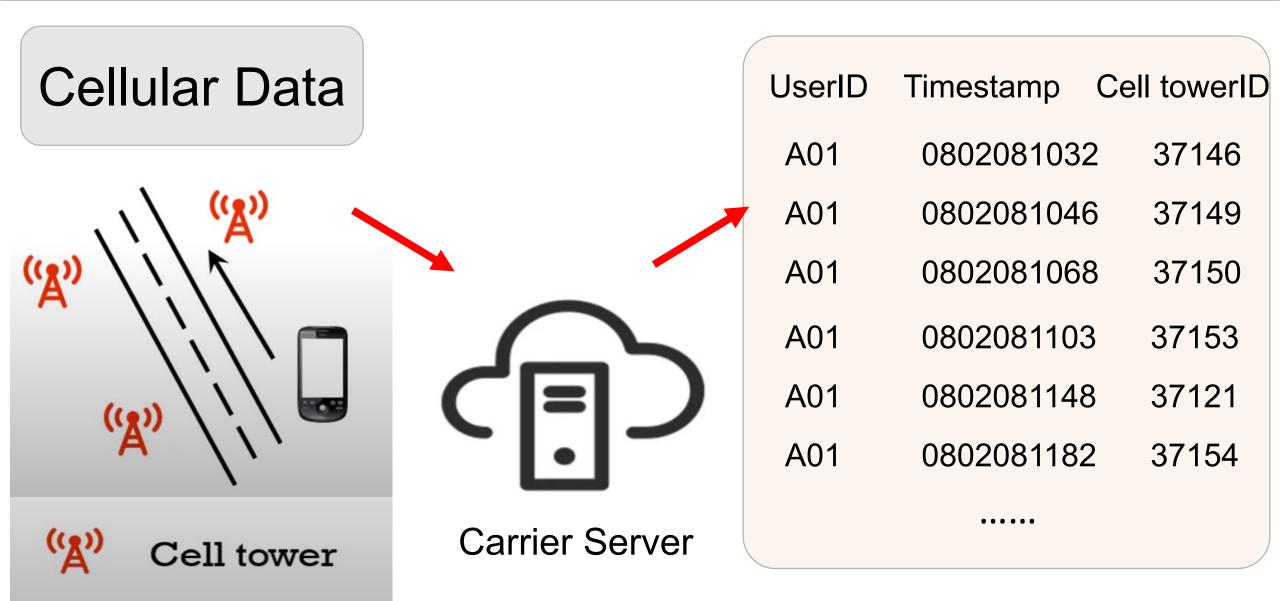


LHMM: A Learning Enhanced HMM Model for Cellular Trajectory Map Matching

Weijie Shi, Jiajie Xu_{*}, Junhua Fang, Pingfu Chao, An Liu, and Xiaofang Zhou

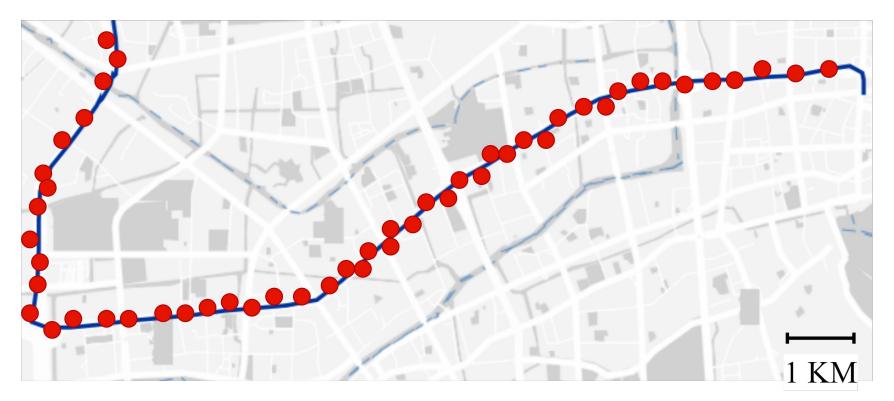


Two Basic Concepts



Two Basic Concepts

Cellular Trajectory Map-Matching

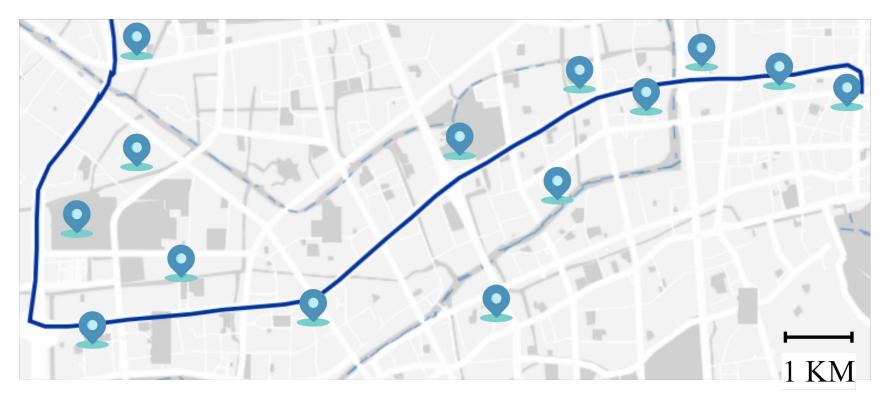


• GPS trajectory point

cellular trajectory point —— traveled path

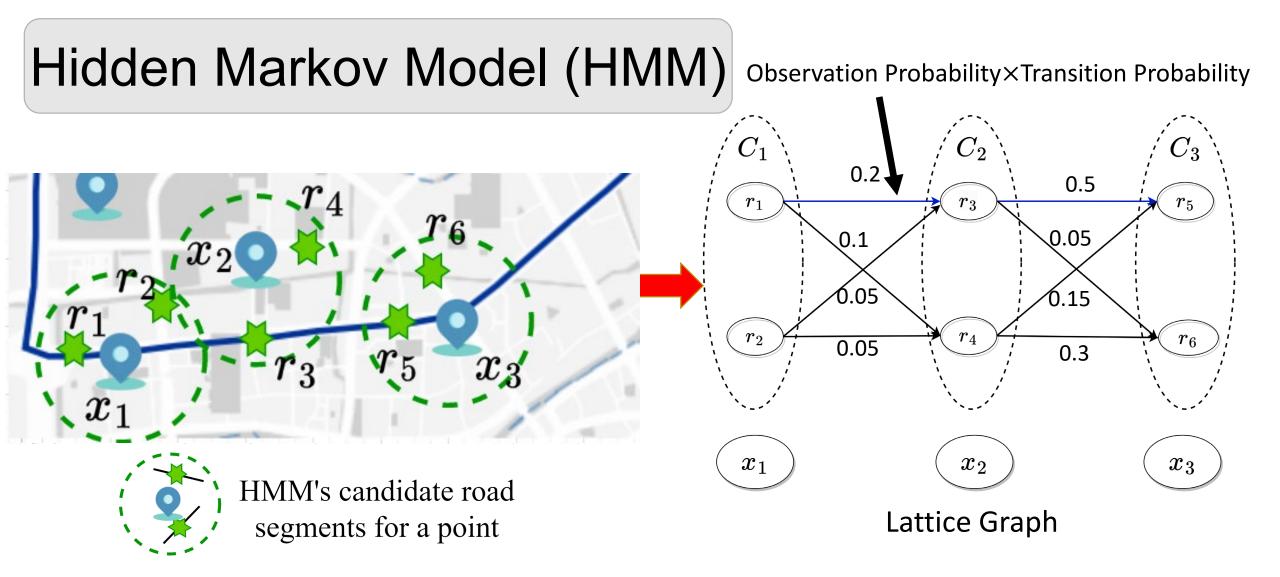
Two Basic Concepts

Cellular Trajectory Map-Matching



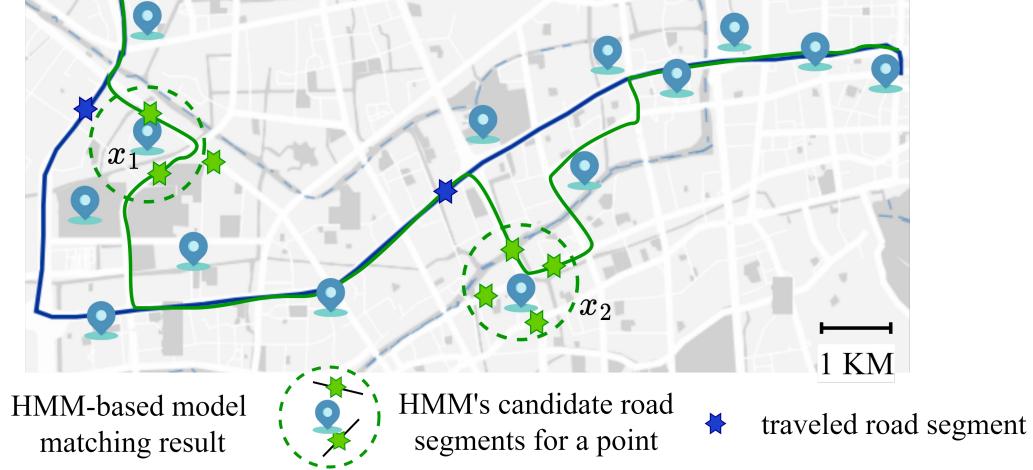
• GPS trajectory point

cellular trajectory point _____ tr

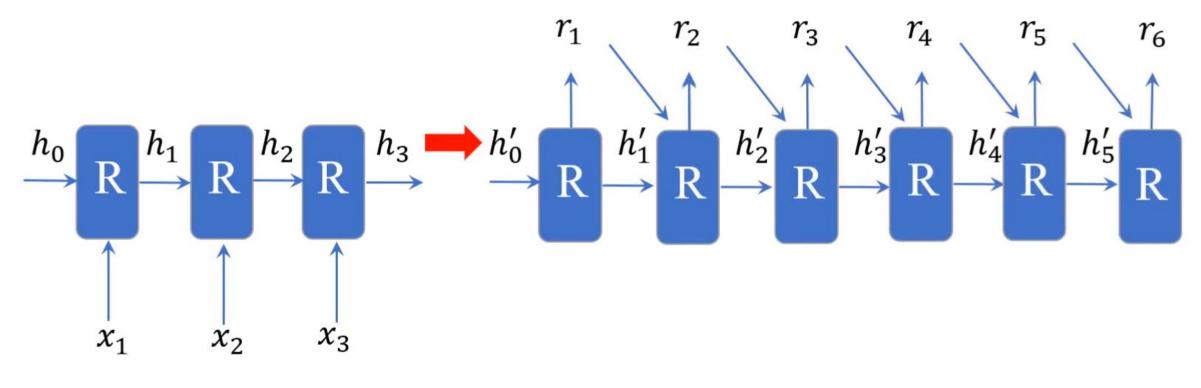


HMM's Drawback

The observation probability P_O and transition probability P_T are guided by explicit features (like distance)



Sequence to Sequence Model (Seq2Seq)

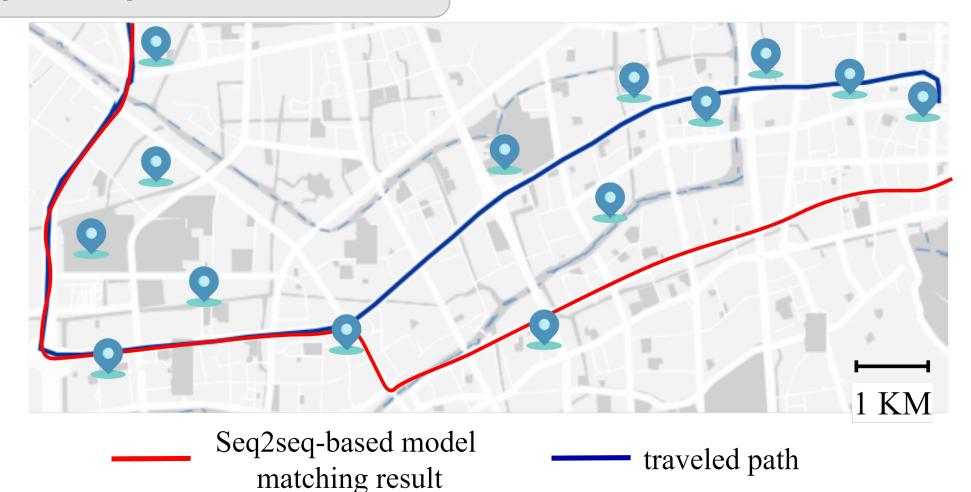


Encoder

Decoder

Seq2Seq's Drawback

Facing severe error propagation



Advantages of HMM and Seq2Seq

HMM-based model matching result

Seq2seq-based model matching result

traveled path

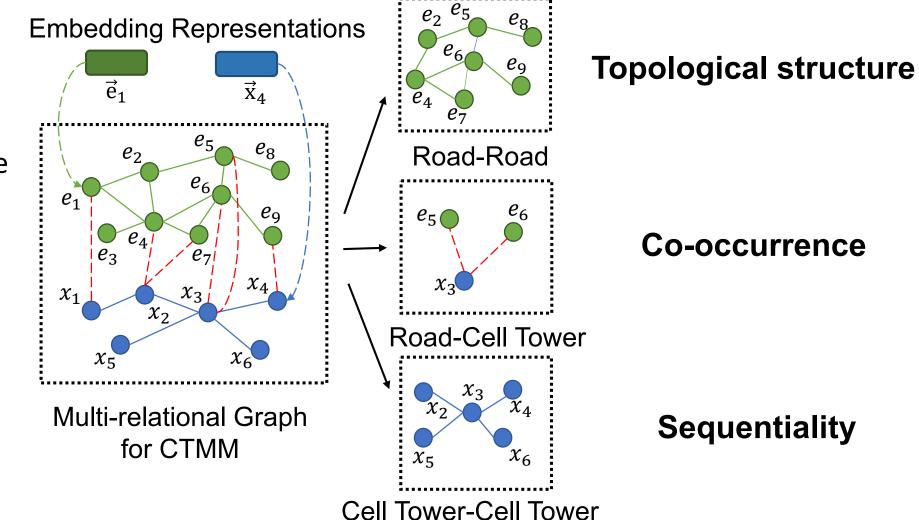
Learning Enhanced Hidden Markov Model

Learning Enhanced Hidden Markov Model

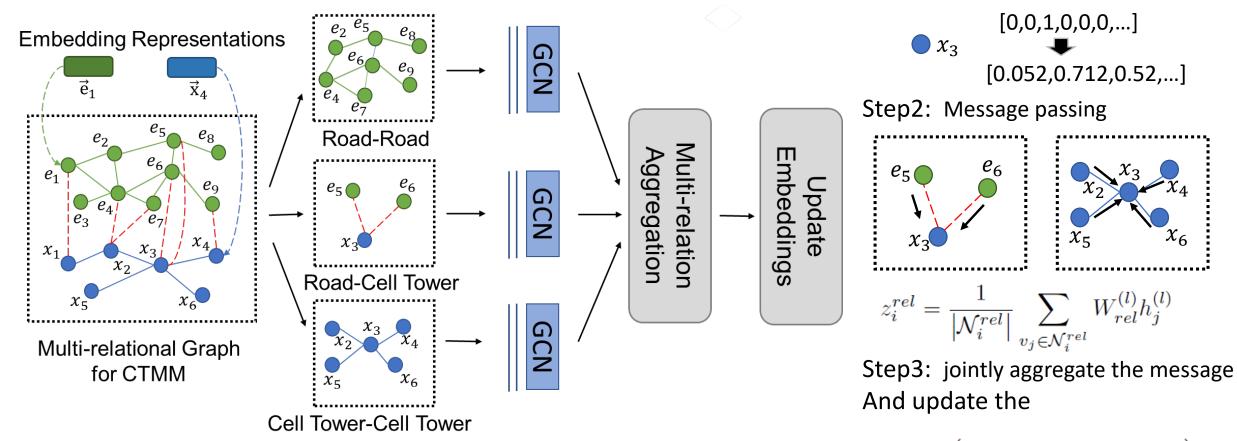
Aim to using **Neural Network** instead of hand-designed heuristic to learn **Observation Probability** *P*₀ and **Transition Probability** *P*_T

Challenge 1 – Multi-relation Representation Learning

How to effectively capture these relations and embedded them into a shared space?



Solution 1 – Multi-relation Representation Learning

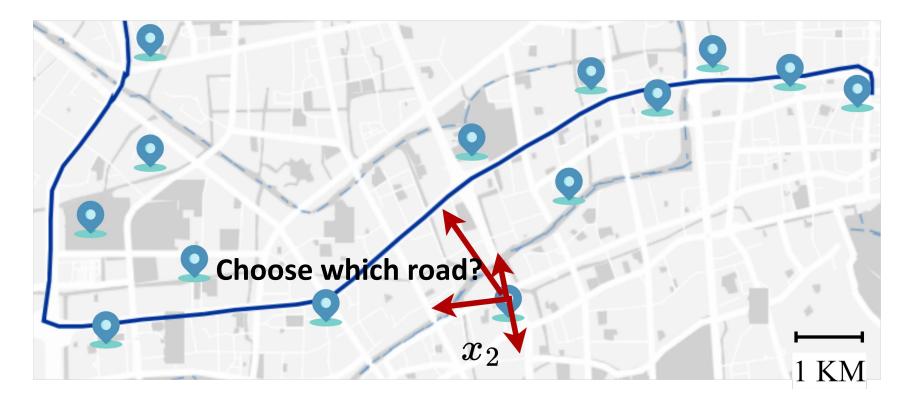


$$h_i^{(l+1)} = \sigma \left(\sum_{rel \in \mathcal{R}} W_{agg} z_i^{rel} + W_0^{(l)} h_i^{(l)} \right)$$

Step1: Initialize

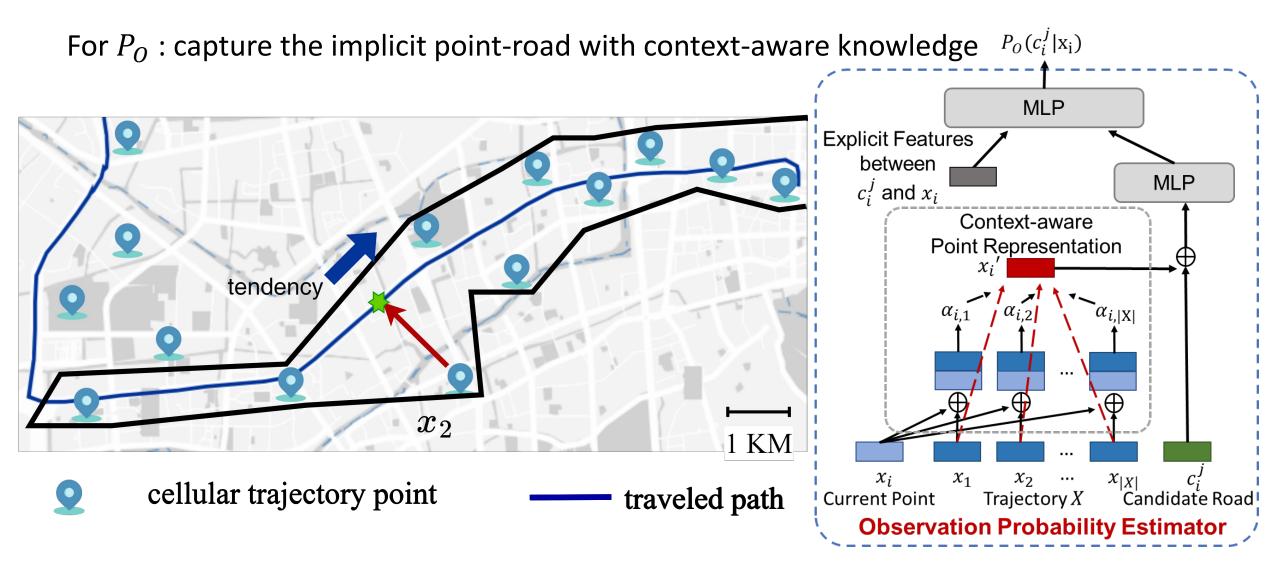
Challenge 2 – Learning for Observation Probability

For P_0 : there are too roads with high relevant with the point x_2



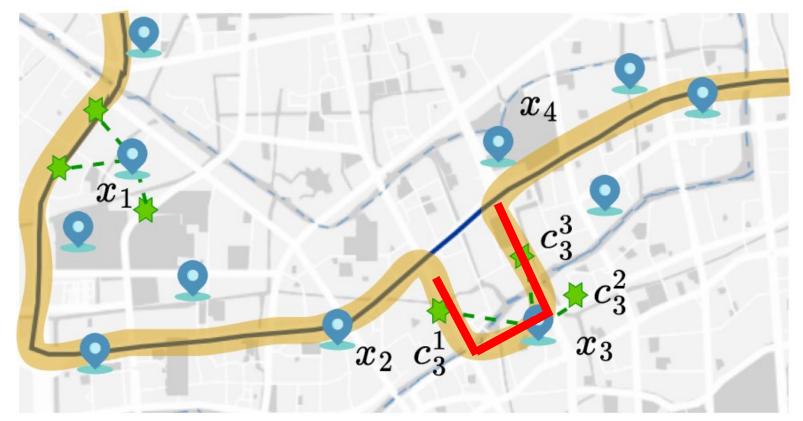
cellular trajectory point _____ traveled path

Solution 2 – Learning for Observation Probability



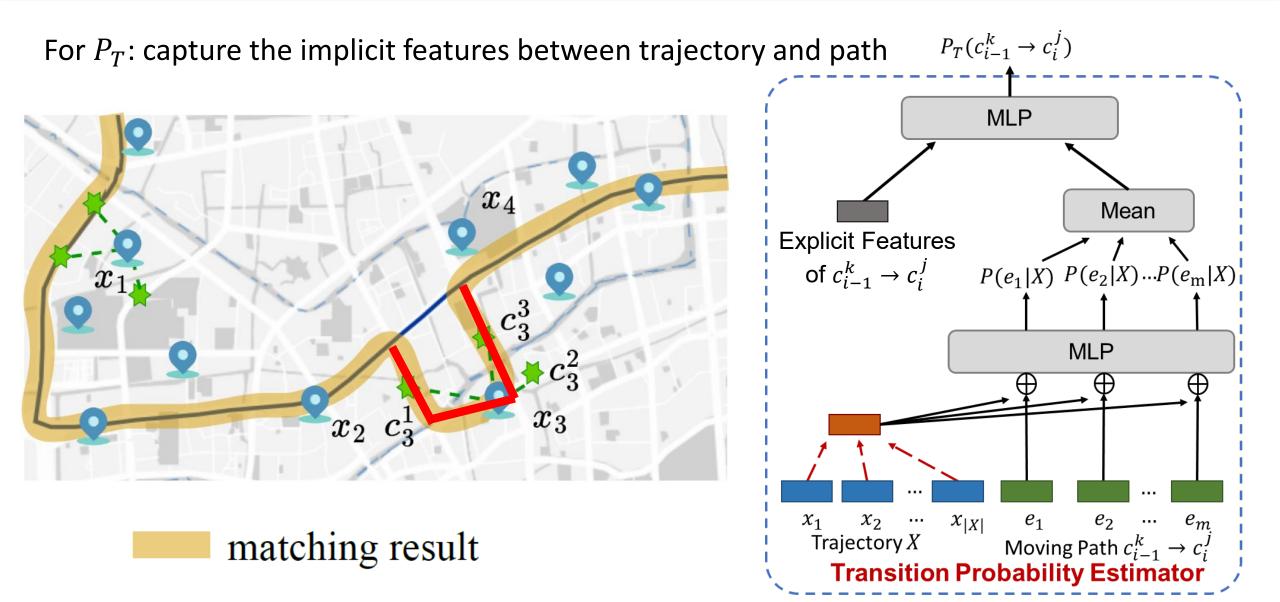
Challenge 3 – Learning for Transition Probability

For P_T : how to test the detour of the moving path?



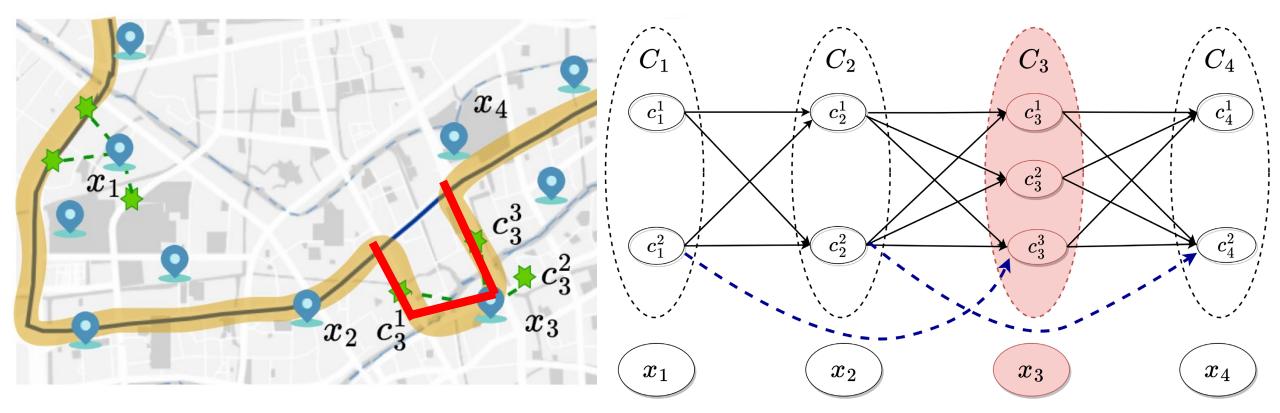
matching result

Solution 3 – Learning for Transition Probability



Challenge 4 – Improved Lattice Graph

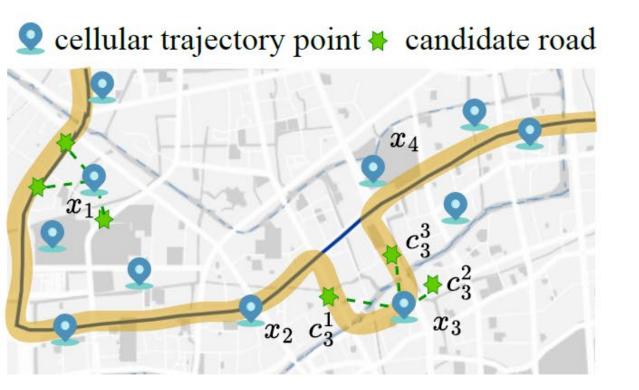
how to remedy the detour of the moving path?

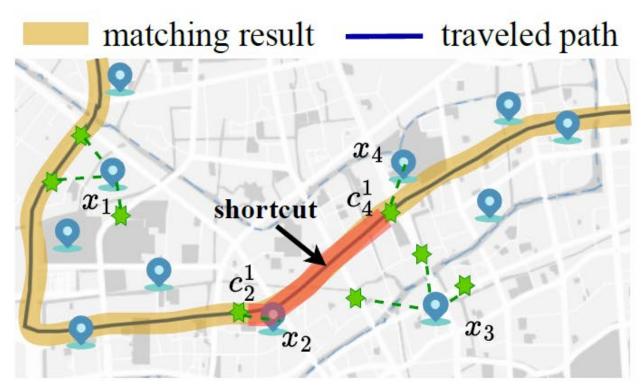


matching result

Solution 4 – Improved Lattice Graph

using shortcuts to provide chances to skip the unqualified candidate set





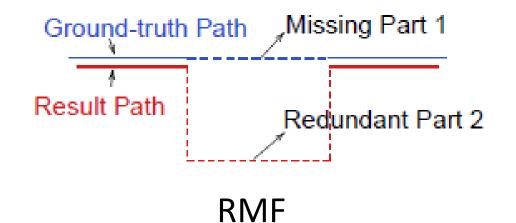
Experiment - Dataset

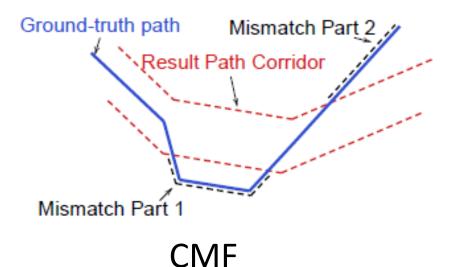
category	Hangzhou	Xiamen
road segments	92,913	64,828
intersections	67,330	37,591
all cellular trajectory points	3.61 million	1.18 million
all GPS trajectory points	9.73 million	4.98 million
cellular trajectory points per trajectory	34	40
GPS trajectory points per trajectory	81	88
average cellular sampling interval (s)	67	42
maximum cellular sampling interval (s)	247	185
average cellular sampling distance (m)	730	650
median cellular sampling distance (m)	493	455

DATASET CHARACTERISTIC

Experiment - Evaluation criteria

- Precision and Recall
- Route Mismatch Fraction (RMF)
- Corridor Mismatch Fraction (CMF)



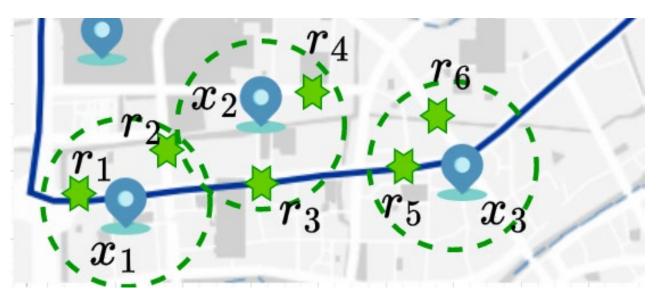


 $RMF = \frac{\sum length of mismatched road segments}{length of the ground-truth path}$

 $CMF = \frac{\sum corridor \ uncovered \ length}{length \ of \ the \ ground-truth \ path}$

Experiment - Evaluation criteria

- Precision and Recall
- Route Mismatch Fraction (RMF)
- Corridor Mismatch Fraction (CMF)
- Hitting Ratio (HR)
- Average inference Time (Avg Time)



HMM's candidate road segments for a point

Experiment – Overall Performance

	1									
Dataset			Hangzh	ou				Xiame	n	
Metric	Precision	Recall	RMF	CMF50	Avg Time (s)	Precision	Recall	RMF	CMF50	Avg Time (s)
			Methods	designed for	or GPS trajectory	/ map-matching				
STM [8]	0.388	0.476	1.237	0.225	0.040	0.411	0.498	1.050	0.198	0.044
IVMM [10]	0.409	0.518	1.125	0.188	0.101	0.428	0.529	0.936	0.172	0.136
IFM [32]	0.430	0.522	1.024	0.178	0.045	0.451	0.537	0.889	0.167	0.048
DeepMM [37]	0.446	0.544	0.881	0.172	0.951	0.478	0.568	0.785	0.158	1.284
MCM [34]	0.449	0.552	0.893	0.169	0.033	0.479	0.572	0.780	0.152	0.039
TransformerMM [38]	0.455	0.552	0.838	0.170	1.667	0.483	0.577	0.769	0.153	1.857
				Methods	designed for CT	MM				
CLSTERS [41]	0.443	0.551	0.922	0.173	0.043	0.470	0.563	0.805	0.154	0.048
SNet [12]	0.446	0.555	0.891	0.169	0.034	0.475	0.565	0.792	0.153	0.041
THMM [42]	0.461	0.562	0.815	0.165	0.041	0.486	0.583	0.767	0.148	0.045
DMM [15]	<u>0.467</u>	0.566	0.784	0.163	0.853	0.489	0.594	0.755	0.145	0.916
Our method										
LHMM	0.516	0.613	0.670	0.126	0.032	0.547	0.667	0.641	0.124	0.037
Improved	10.49%	8.30%	14.54%	22.69%	3.03%	11.86%	12.28%	8.79%	15.09%	5.12%

HMM based methods

Seq2Seq based methods

Dataset	Variant	Precision	CMF50	HR
	LHMM	0.516	0.126	0.953
	LHMM-E	0.457	0.142	0.931
	LHMM-H	0.489	0.136	0.942
Hanarhau	LHMM-O	0.428	0.178	0.920
Hangzhou	LHMM-T	0.472	0.155	0.926
	LHMM-S	0.484	0.140	0.937
	STM	0.388	0.225	0.874
	STM+S	0.405	0.189	0.911
	LHMM	0.545	0.125	0.965
	LHMM-E	0.494	0.144	0.938
	LHMM-H	0.517	0.142	0.942
Xiamen	LHMM-O	0.462	0.158	0.931
Alamen	LHMM-T	0.524	0.135	0.952
	LHMM-S	0.516	0.139	0.944
	STM	0.411	0.198	0.882
	STM+S	0.432	0.170	0.915

Dataset	Variant	Precision	CMF50	HR
	LHMM	0.516	0.126	0.953
	LHMM-E	0.457	0.142	0.931
	LHMM-H	0.489	0.136	0.942
Uanazhou	LHMM-O	0.428	0.178	0.920
Hangzhou	LHMM-T	0.472	0.155	0.926
	LHMM-S	0.484	0.140	0.937
	STM	0.388	0.225	0.874
	STM+S	0.405	0.189	0.911
	LHMM	0.545	0.125	0.965
	LHMM-E	0.494	0.144	0.938
	LHMM-H	0.517	0.142	0.942
Xiamen	LHMM-O	0.462	0.158	0.931
лашен	LHMM-T	0.524	0.135	0.952
	LHMM-S	0.516	0.139	0.944
	STM	0.411	0.198	0.882
	STM+S	0.432	0.170	0.915

Dataset	Variant	Precision	CMF50	HR
	LHMM	0.516	0.126	0.953
	LHMM-E	0.457	0.142	0.931
	LHMM-H	0.489	0.136	0.942
Hangzhou	LHMM-O	0.428	0.178	0.920
Hangzhou	LHMM-T	0.472	0.155	0.926
	LHMM-S	0.484	0.140	0.937
	STM	0.388	0.225	0.874
	STM+S	0.405	0.189	0.911
	LHMM	0.545	0.125	0.965
	LHMM-E	0.494	0.144	0.938
	LHMM-H	0.517	0.142	0.942
Xiamen	LHMM-O	0.462	0.158	0.931
Alamen	LHMM-T	0.524	0.135	0.952
	LHMM-S	0.516	0.139	0.944
	STM	0.411	0.198	0.882
	STM+S	0.432	0.170	0.915

Dataset	Variant	Precision	CMF50	HR
	LHMM	0.516	0.126	0.953
	LHMM-E	0.457	0.142	0.931
	LHMM-H	0.489	0.136	0.942
Hanazhou	LHMM-O	0.428	0.178	0.920
Hangzhou	LHMM-T	0.472	0.155	0.926
	LHMM-S	0.484	0.140	0.937
	STM	0.388	0.225	0.874
	STM+S	0.405	0.189	0.911
	LHMM	0.545	0.125	0.965
	LHMM-E	0.494	0.144	0.938
	LHMM-H	0.517	0.142	0.942
Xiamen	LHMM-O	0.462	0.158	0.931
Alamen	LHMM-T	0.524	0.135	0.952
	LHMM-S	0.516	0.139	0.944
	STM	0.411	0.198	0.882
	STM+S	0.432	0.170	0.915

Summary

- we have developed a learning-enhanced HMM map-matching approach for cellular trajectories.
- A representation learning component is designed to fully capture multi-relational information tailored for the CTMM task.
- A learned observation probability captures the implicit contextaware correlation between roads and points for better positioning denoising, and a learned transition probability models the hidden relevance between moving paths and trajectories.
- These two probabilities then guide the path-finding process on an improved candidate graph.